
 Chapter 8

 THE DSI-32 LINKER

 8.1 INTRODUCTION
LN (the DSI-32 Linker) takes object modules generated by AS (the
DSI-32 assembler) and produces an executable file that can be
loaded onto the DSI-32 Coprocessor board and executed. The
linker supports the National Semiconductor 32000 module table
scheme of linking.

The features of the LN object linker are:

 o Complete set of directives* available for easy and
 efficient linking
 o Linker can be driven interactively or by command file
 o Full control of memory allocation by directives
 o Support of "ROM" modules
 o Library module support
 o Optional Link Map can be generated by directive

The programmer has complete control over the placement of code,
linkage tables, static data areas and the user stack. Each
module's memory allocation can be assigned to a global location
or on a module by module basis. Initialized COMMON data areas
are supported as well.

 8.2 INPUT AND OUTPUT FILES USED AND GENERATED BY LINKER
LN links the user's object modules produced by AS and generates
an executable file. An optional map file may be generated by
issuing the MAP directive to the linker.

Object file - Input. The object code and associated tables
generated by AS are in this file. The default filename extension
for object files is .O32.

Indirect file - Input. The indirect (command) file contains a
list of linker directives used to drive the linker without
requiring interactive input. The directives supported by the
indirect file are the same as those used in interactive mode,
except that embedded indirect commands are not supported. See
section 8.2.2 for a discussion of interactive and indirect modes
of input.

Executable file - Output. The linked code is placed in an
executable file which may then be loaded onto the DSI-32
Coprocessor board by the Loader. The default extension for
executable files is .E32.

Map file - Output. If the MAP directive is given to the linker,
the linker map information is placed in a text file called a map
file. The default extension for map files is .M32.

Errors and Warnings - Output. Errors detected by the linker,
whether operating in interactive or indirect (command file) mode
are sent to the console immediately after the error occurs. In

* - for a full discussion of directives, see section 8.6

indirect mode, error messages are displayed after the directive
detecting the error has been echoed to the console. Some
directives will cause the linker to exit to the operating system
if an error is detected, whereas other directive errors will
return to the linker prompt for further directives.

 8.3 LINKER INVOCATION
The Linker may be invoked in an interactive mode or command line
mode. Interactive mode allows the user to specify several
directives, one at a time to the linker. As it processes each
directive it immediately report any errors. Command line mode
allows the user to list on the operating system command line all
the necessary directives for linking.

Interactive mode is entered by simply typing "LN" after the
system prompt. Command line mode in invoked by specifying the
link directives immediately after "LN". Both modes use the same
directives and require the same format for each directive.

When invoked in interactive mode, the linker displays a LN>
prompt on the screen and waits for the user to start entering
directives. The user then enters the directives, one directive
at a time followed by a carriage return (<CR>), until the full
set of directives necessary for linking have been specified.
If a directive is improperly specified, or a directive conflicts
with a previously entered directive, the linker will display an
error message immediately after the directive has been entered.
When all directives have been entered, a blank line (i.e. a line
containing only a <CR>) instructs the linker to link the modules
specified under the constraints of the directives. If all
necessary directives have not been specified, the linker will
display an error message reporting that fact. Depending on the
severity of the error, the linker will return to the LN> prompt,
or return to the operating system.

As an example of interactive mode, the following is a session
using LN to link three modules named a.o32, b.o32 and c.o32
producing the executable file named d.e32:

 C>LN
 DSI-32 Linker V1.10
 Copyright (c)1985 Definicon Systems Inc.
 LN> FILE=a.o32,b.o32
 LN> FILE=c.o32
 LN> EXEC=d.e32
 LN> RAM=0..fffff
 LN>

 C>

Whether invoked in command line mode or interactive mode, each
directive specified on the command or prompt line must be
separated by blanks. Directives themselves, however, must not
contain blanks. For example, to link the same modules in the
above example in command line mode, the following MS-DOS command
line is used:

 C>LN FILE=a.o32,b.o32,c.o32 EXEC=d.e32 RAM=0..fffff
 DSI-32 Linker V1.10
 Copyright (c)1985 Definicon Systems Inc.

 C>

Note that the single directive FILE, though it refers to three
module names, does not contain embedded blanks, whereas a blank
is necessary to separate the FILE directive from the EXEC
directive. This requirement is the same in both indirect and
interactive modes.
In both interactive and command line mode (unless the NODEFAULT
directive is used), when directed to link, the linker will first
look for a default file which is specific to the programming
language for the link session. Four language types are supported
by LN, the default filenames for the language types are listed
below:

1) C language LNC.D32

2) Pascal language LNP.D32

3) Fortran language LNF.D32

4) Assembler language LNA.D32

The default file normally contains default libraries to search
for a given language type and any hardware specific directives
such as the amount of RAM, ROM, etc. If this file is not found,
the linker issues a warning message. The user should place
directives in this file that are invariant for each invocation of
the linker. Directives in the default file are echoed to the
console (in the same manner as indirect files, see section 8.7).

The minimum required set of directives for linking consists of
the following:

 o one or more FILE directives specifying all files to be
 linked
 o one or more LIBRARY directives specifying all libraries
 (if any) necessary for linking
 o a RAM directive specifying total system memory

 8.4 RESOLVING EXTERNAL REFERENCES
LN resolves external references by searching each module
specified by the FILE_LIST directive and then searching each
module specified by the LIBRARY directive for symbols that match
outstanding unresolved symbols. External symbols are specified
in the assembler source code with IMPORT/IMPORTP and
EXPORT/EXPORTP pseudo-ops. A match if found when an IMPORTed
symbol has the same name as an EXPORTed symbol and their types
are consistent. The following table defines consistency of
import/export symbol types.

 IMPORT type EXPORT type
 ----------- ---------------------------------
 Data SB Data, ABS Data, PC Data
 Entry Point PC Entry, Local Entry

If a symbol is unresolved after searching both the user modules
and libraries, LN will continue processing the remaining modules
to generate a map but will not generate an executable file. An
error message will list all unresolved external references at the
end of processing.

 8.5 MEMORY ALLOCATION
After all external references have been resolved, LN begins to
allocate memory for the executable file. The following
structures require either automatic or user specified memory
allocation:

 o the global module table
 o code blocks for each module
 o link tables for each module
 o static base data blocks for each module
 o the stack
 o the heap

By default, each structure is automatically allocated by LN using
a contiguous allocation scheme. LN places the structures in the
lowest available RAM address in the order listed above. If the
default allocation scheme is not optimal for a particular
program, it can be overridden by explicit specification of
allocation addresses using the memory allocation directives.

Allocation of structures for a particular module, independent of
the global specifications defined by default or by memory
allocation directives, is handled by the MODULE directive. This
directive specifies certain allocation requirements that are not
necessarily addressed by a global allocation scheme, for example
COMMON memory in a FORTRAN program.

If LN is unable to allocate a specified structure due to size
limitations, an error message will be sent to the console and
control will return to the operating system. The user does not
have control over which order the structures are allocated.

Due to the architecture of the 32000 microprocessor series, the
Global Module Table must be allocated in the lower 64k bytes of
RAM. The stack is allocated a default 4096 bytes unless
otherwise specified, the remaining memory is allocated to the
heap. Note that it may be necessary to allocate more stack for
certain programs. None of the structures can be allocated over
non-contiguous blocks of memory and each structure starts at a
double word boundary.

 8.6 DIRECTIVES
Directives provide the linker with the information necessary to
successfully create an executable file. The format of a
directive is:

 dir=spec

where dir is one of LN's directive keywords and spec is variable
information that is significant in the context of the directive.
Note that no spaces are allowed between any parts of the
directive.

There are five forms of directive:

 o INPUT
 o INDIRECT FILE
 o MEMORY ALLOCATION
 o OUTPUT
 o LINKER CONTROL

Directives fall into two categories depending on how many times
they may appear in a link session. Cumulative directives can be
specified more than once during a link session, whereas non-
cumulative directives may be specified a maximum of one time
during any link session. Specifying a non-cumulative directive
more than once will cause LN to generate an error. The
cumulative directives are:

 RAM, ROM, FILE_LIST, MODULE and LIBRARY.

All other directives fall into the non-cumulative category and
therefore can be specified only once.

LN identifies a directive by the first n characters of the
directive keyword which uniquely distinguish it from other
directives. This allows for abbreviated specification of the
directive keyword. For example, SB uniquely identifies SB_START
and distinguishes it from the STACK directive. However, S is an
ambiguous keyword abbreviation and will generate an error.
(NOTE: MOD_START and MODULE do not follow this rule!)

 8.6.1 INPUT DIRECTIVES

The INPUT directives specify which object files LN is to use to
produce an executable file. These directives are:

 o FILE_LIST
 o LIBRARY
 o MAIN

 8.6.1.1 The FILE_LIST directive

Format: FILE_LIST=<filename>[,<filename>]...

description:
 FILE_LIST is the directive keyword

 filename is the name of an object file generated
 by AS. The default filename extension
 is .O32.

The FILE_LIST directive specifies the object file(s) to use for
generating an executable file. This is a required directive.

The current maximum number of files that may be linked is limited
to 300 object files including library files. Note a library file
is counted as a single file.

Since this directive is cumulative (see section 8.6), it may be
specified more than once. This is useful when the names of the
files to link do not fit on one line, and a second line is
required to complete the list.

If LN determines that a file is unusable (i.e. not found, file is
empty, not an object file), an error message is sent to the
console.

Examples:

 1. LN> FILE_LIST=TEST1,TEST2,TEST3.O32,TEST4
 2. LN> F=TEST3.O

In example 1, four object files are specified. Note that no
spaces exist between the filenames.

In example 2, "F" uniquely defines the FILE_LIST directive and a
non-default extension is specified for the object file.

 8.6.1.2 The LIBRARY directive

Format: LIBRARY=<filename>[,<filename>]...

description:
 LIBRARY is the directive keyword

 filename is the name of a library file of object
 modules generated by AS. The default
 extension is .O32.

The LIBRARY directive specifies the object file(s) used by LN for
resolving external references not defined by the FILE_LIST object
files.

This directive is a cumulative directive (see section 8.6) which
allows the user to continue the LIBRARY specification with more
than one line.

When an external reference is satisfied by a library, the
complete object module is included in the executable file. When
the module is included, the linker then tries to resolve all
external references in the new module by searching the library
modules. Modules which do not resolve external references are
not included in the executable file.

If LN determines that a file is unusable (i.e. not found, file is
empty, not an object file), an error message is sent to the
console.

Examples:

 1. LN> LIBRARY=LIB1,LIB2,LIB3.O32,LIB4
 LN> LIBRARY=LIB5,LIB0
 2. LN> LIB=LIB0.O

In example 1, the linker is given two library directives.

In example 2, the abbreviated form of the LIBRARY directive is
used and a non default extension is specified for LIB0 object
file.

 8.6.1.3 The MAIN directives

Format: MAIN=<modulename>

description:
 MAIN is the directive keyword

 modulename is the name of a module contained in an
 object file specified by the FILE_LIST
 or LIBRARY directive.

The MAIN directive specifies which module gains control
immediately after loading of the executable file on the DSI-
32 coprocessor.

If the MAIN directive is not specified, LN determines which
module will gain control using the following set of rules:

 1. If one and only one of the modules in the FILE_LIST or
 LIBRARY directives contain the START pseudo-op, pass
 control to that module.
 2. If there is only one module to link, pass control to
 it.
 3. If 1 or 2 is not the case, send an error message to the
 console and stop linking. Do not generate an
 executable file.

If the START pseudo-op is in more than one object module, the
"one and only one" criteria of rule 1 is not met and LN sends an
error message to the console.

Examples:

 LN> MAIN=FILE1

In this example the module FILE1 will gain control immediately
prior to any other module. Note that any other module that is
linked with FILE1 must not have a START directive, if this is not
the case then LN will issue an error regarding multiple main
modules.

 8.6.2 INDIRECT DIRECTIVES

The INDIRECT FILE directives specify which indirect (command)
files are to be used in producing an executable file. These
directives are:

 o INDIRECT
 o NODEFAULT

For a full discussion on how to use the linker with indirect
files, see section 8.7

 8.6.2.1 The INDIRECT directive

Format: INDIRECT=<filename>

description:
 INDIRECT is the directive keyword

 filename is the name of an ASCII file containing
 LN directives. The default file
 extension is .IND.

The INDIRECT directive specifies the name of a file to be user to
direct the linker.

When the INDIRECT directive is used, the linker opens the
specified file and begins interpreting the text in the file in a
similar manner to keyboard input. The syntax used for directives
in indirect files are identical to that for interactive input.

As the linker processes an INDIRECT directive, it echoes the
directive to the console prefaced with an at (@) sign. If during
the processing of the directive an error is detected, the linker
sends an error message to the console immediately after the
command. In interactive mode, the linker returns to the LN>
prompt after the indirect file has been fully processed. If the
linker is in non-interactive mode, after it finishes processing
the indirect file, it processes the default file and proceeds to
link the modules.

INDIRECT directives cannot be used in indirect files. Link
directives (<CR>) are not processed in indirect files.

Examples:

 1. LN> IND=TEST
 2. C>LN IND=TEST

In example 1, the INDIRECT directive is used to specify the file
TEST.IND as the indirect file. This example is in interactive
mode.

In example 2, the INDIRECT directive is specified in the MS-DOS
command line and causes the linker to process in non-interactive
mode.

 8.6.2.2 The NODEFAULT directive

Format: NODEFAULT

description:
 NODEFAULT is the directive keyword

The NODEFAULT directive tells the linker that the file LNx.D32 is
not to be searched for on read when the link directive (<CR>) is
issued.

The default file (LNx.D32) usually contains directives which
remain invariant for each invocation of the linker.

Example:

 LN> NODEF

This example tells the linker that LNx.D32 is not to be
searched for or read.

 8.6.3 MEMORY ALLOCATION DIRECTIVES

The MEMORY ALLOCATION directives control the allocation of
certain linker data structures in RAM. These directives are:

 o CODE
 o LINK
 o MOD_START
 o RAM
 o ROM
 o SB_START
 o STACK
 o MODULE

The order in which these directives are not important and have no
impact on how LN allocates memory. For each of the above
directives, LN will abort under the following circumstances:

 1. an attempt to allocate memory in a non-existent area
 2. memory allocations intersect previous allocations
 3. an attempt to allocate memory in a ROM area

 8.6.3.1 The CODE directive

Format: CODE=<address>

description:
 CODE is the directive keyword

 address is a valid RAM address

The CODE directive specifies the beginning location that the
linker can load code. This directive allocates a contiguous
block of memory for the code of each module starting at
<address>.

If the code block does not fit into the allocated memory, LN
aborts processing and returns to the MS-DOS system prompt.

Example:

 LN> CODE=C000

This example locates the code block beginning at address C000.

 8.6.3.2 The LINK directive

Format: LINK=<address>

description:
 LINK is the directive keyword

 address is a valid RAM address

The LINK directive specifies the beginning location that the
linker can load the link tables for each module. This directive
allocates a contiguous block of memory for the links of each
module starting at <address>.

If the link block does not fit into the allocated memory, LN
aborts processing and returns to the MS-DOS system prompt.

Example:

 LN> LINK=D000

This example locates the link table block beginning at address
D000.

 8.6.3.3 The MOD directive

Format: MOD=<address>

description:
 MOD is the directive keyword

 address is a valid RAM address

The MOD directive specifies the beginning location that the
linker can load the global module tables for each module. This
directive allocates a contiguous block of memory for the global
module table starting at <address>.

If the global module table block does not fit into the allocated
memory, LN aborts processing and returns to the MS-DOS system
prompt.

Example:

 LN> MOD=D000

This example locates the global module table block beginning at
address D000.

 8.6.3.4 The RAM directive

Format: RAM={<low_addr>..<high_addr>|<low_addr>+<length>}
 [,{<low_addr>..<high_addr>|<low_addr>+<length>}]...

description:
 RAM is the directive keyword

 low_addr, high_addr
 are valid RAM addresses

 length is a positive hex integer.

The RAM directive specifies all of the valid RAM address space
within which the linker may load code and data. This is a
required directive.

The RAM directive can specify valid RAM address space in two
ways. First, a range of valid address space can be specified by
using the <low_addr>..<high_addr> format. In this format,
low_addr is a valid hex address representing the beginning of the
address space and high_addr is a valid hex address representing
the top of the address space. low_addr must be less than
high_addr. In the second format, <low_addr>+<length>, low_addr
is a valid hex address representing the beginning of the address
space and length is a positive hex integer representing the
number of bytes in the space.

More than one contiguous RAM address space can be specified in
the RAM directive. However, if the address spaces overlap, LN
sends an error message to the console and returns to the MS-DOS
system.

NOTE: RAM address spaces must not overlap with memory used by the
 MON monitor program if it is required to run the monitor and
 the user program simultaneously. The monitor normally
 changes the top of the heap to just below itself. Refer to
 the Monitor Reference Manual for more information.

Examples:

 1. LN> RAM=0..FFFFF
 2. LN> RAM=9000..DFFF,E000+500

In example 1, the RAM directive specified one megabyte of
contiguous memory is available for code and data.

In example 2, the RAM directive specifies two disjoint,
contiguous address spaces available for code and data. The first
format specifies a range, whereas the second format specifies a
number of bytes.

 8.6.3.5 The ROM directive

Format: ROM={<low_addr>..<high_addr>|<low_addr>+<length>}
 [,{<low_addr>..<high_addr>|<low_addr>+<length>}]...

description:
 ROM is the directive keyword

 low_addr, high_addr
 are valid ROM addresses

 length is a positive hex integer.

This directive is not intended for use on the DSI-32 coprocessor
board. It is solely available when LN is being used to link a
program that is targeted to a different 32000 environment.

The ROM directive specifies all of the valid ROM address space
within which the linker may not load code and data. This
directive is intended for systems that have ROM taking up part of
the real or virtual address space.

The ROM directive can specify valid ROM address space in two
ways. First, a range of valid address space can be specified by
using the <low_addr>..<high_addr> format. In this format,
low_addr is a valid hex address representing the beginning of the
address space and high_addr is a valid hex address representing
the top of the address space. low_addr must be less than
high_addr. In the second format, <low_addr>+<length>, low_addr
is a valid hex address representing the beginning of the address
space and length is a positive hex integer representing the
number of bytes in the space.

More than one contiguous ROM address space can be specified in
the ROM directive. However, if the address spaces overlap,
LN sends an error message to the console and returns to the MS-
DOS system.

Examples:

 1. LN> ROM=0..200
 2. LN> ROM=9000..9020,E000+200

In example 1, the ROM directive specified 201 bytes of contiguous
memory is not available for code and data.

In example 2, the ROM directive specifies two disjoint,
contiguous address spaces unavailable for code and data. The
first format specifies a range, whereas the second format
specifies a number of bytes.

 8.6.3.6 The SB_START directive

Format: SB_START=<address>

description:
 SB_START is the directive keyword

 address is a valid RAM address

The SB_START directive specifies the address where allocation of
the SB (static base) data is to begin.

Example:

 LN> SB_START=D000

In this example, the static base address is set to D000.

 8.6.3.7 The STACK directive

Format: STACK={<low_addr>..<high_addr>|<low_addr+<length>
 |+<length>}

description:
 STACK is the directive keyword

 low_addr, high_addr
 are valid RAM addresses

 length is a hex integer

The STACK directive is specifies the address ranges for the
global stack.

The STACK directive can specify valid RAM address space in three
ways. First, a range of valid address space can be specified by
using the <low_addr>..<high_addr> format. In this format,
low_addr is a valid hex address representing the beginning of the
address space and high_addr is a valid hex address representing
the top of the address space. low_addr must be less than
high_addr. In the second format, <low_addr>+<length>, low_addr
is the bottom of the stack and the top of the stack will be the
sum of <low_addr> and <length>. The third format, +<length>,
<low_addr> is chosen by LN as the next available memory location
and the length is a positive hex integer representing the number
of bytes to allocate to the stack.

Example:

 LN> STACK=+3000

In the example, the bottom of the stack is chosen by LN while the
top of the stack is the sum of <low_addr> (chosen by LN) and
<length>.

 8.6.3.8 The MODULE directive

Format: MODULE=<modulename>/<memdir>

description:
 MODULE is the directive keyword

 modulename is a valid module name

 memdir is any memory directive other than
 MODULE

The MODULE directive allows control of memory allocation on a
module by module basis independent of the global memory
allocations.

This directive specifies certain allocation requirements that are
not necessarily addressed by a global allocation scheme, for
example COMMON memory in a FORTRAN program.

Example:

 LN> MODULE=MAIN/SB_START=E000
 LN> MODULE=SUB/SB_START=E000

In this example, the static base beginning address for the
modules MAIN and SUB are set to E000. This allows both modules
to share the same data without having to pass an address.

 8.6.4 OUTPUT DIRECTIVES

The OUTPUT directives control the output of executable files and
map files. These directives are:

 o EXECUTABLE/NOEXECUTABLE
 o MAP

 8.6.4.1 The EXEC and NOEXEC directives

Format: EXEC=<filename>
 NOEXEC

description:
 EXEC, NOEXEC is the directive keyword

 <filename> is the name of an executable file
 to be generated by the LN. The default
 filename extension is .E32.

The EXEC and NOEXEC directives control the output of the
executable file generated by LN.

If both the EXEC and NOEXEC directive are omitted from a link
session, the name of the executable file defaults to the first
file specified in the first FILE_LIST directive with a .E32
extension. If the EXEC directive is specified, the name of the
executable file is the name specified in the directive. If no
extension is specified, .E32 is the default. If the NOEXEC
directive is specified, no executable file is generated. This is
useful when only a map file is required.

Examples:

 1. LN> EXEC=TEST
 2. LN> NOEXEC
 LN> MAP

In example 1, the linker generates an executable file named
TEST.E32.

In example 2, the linker does not generate an executable file,
though it will attempt to satisfy all unresolved references if
directed to. It will generate a MAP file, however.

 8.6.4.2 The MAP directive

Format: MAP[=<filename>]

description:
 MAP is the directive keyword

 filename is the name of a map file to be
 generated by the LN linker. The default
 filename extension is .M32.

The MAP directive specifies that a map file is to be generated
and optionally allows the user to specify the name of the map
file. If the filename is specified and no extension is given in
the filename, the extension defaults to .M32. If no filename is
given, the name of the map file will default to the name of the
first file specified in the first FILE_LIST directive with an
extension of .M32.

Example:

 LN> MAP=TEST

In the example, a map file is generated with the name TEST.M32.

 8.6.5 LINKER CONTROL DIRECTIVES

The CONTROL directives control the execution of LN. These
directives are:

 o QUIT/EXIT
 o link (<CR>)

 8.6.5.1 The QUIT and EXIT directives

Format: QUIT
 EXIT

description:

 QUIT, EXIT are the directive keywords

The QUIT and EXIT function identically. They halt all link
activity and return control to the MS-DOS operating system. No
output files are generated when these directives are used.

 8.6.5.2 The link (<CR>) directive

Format: <CR>

description:
 <CR> is a carriage return character

The link directive is specified by entering a <CR> immediately
after the LN> prompt. This directive is only available in
interactive mode.

After specifying all necessary directives for a successful link,
the link directive tells the linker to execute the link based on
the specifications of the previously entered directives. If all
directives have been specified correctly, the linker will attempt
to resolve all external references, allocate all memory
structures and if directed to do so, will generate executable and
map files. If an error occurs during the link operation, an
error message is sent to the console and processing stops.
Depending on the error and the mode, control returns either to
the LN> prompt or the MS-DOS system prompt.

Example:

 C>LN
 DSI-32 Linker V1.10
 Copyright (c)1985 Definicon Systems Inc.
 LN> FILE=TEST1.O32,TEST2.O32
 LN> FILE=TEST3.O32
 LN> EXEC=TEST.O32
 LN> MOD=80
 LN> CODE=4000
 LN> RAM=0..fffff
 LN>

 C>

In the example, the object modules TEST1.O32, TEST2.O32 and
TEST3.O32 are linked to produce the executable file TEST.E32.
Note that the last line of the linker directives is a carriage
return character.

 8.7 USE OF INDIRECT FILES
Indirect files allow the user the ease of instructing the linker
by using a file containing a set of directives for linking,
rather than having to re-enter the set of directives each time
the linker is used.

Indirect files can be specified in two ways. First, using the
command line mode, an indirect file can be specified by typing
"LN IND=filename" where filename is a file containing linker
directives. This instructs the linker to open the file filename
and take instructions from that file. The default extension on
indirect files is .IND. The second way to specify indirect files
is after invoking interactive mode, use the INDIRECT directive to
specify an indirect file. Execution of the linker will then
proceed with directives from the indirect file.

When invoked in indirect mode, the linker takes directives from
the specified indirect file until it reaches the end of the file.
When a directive is read from the file, the linker processes the
directive, echoes the directive to the console and reports any
errors to the console before going on to the next directive. If
an error occurs, processing will always continue until the
complete file has been read. Depending on the severity of the
error, however, the linker will return control to the LN> prompt
or to the MS-DOS system prompt.

If, for example the file a.ind has the following directives,

 FILE=a.o32
 EXEC=d.e32
 RAM=0..fffff

then the following command sequences can be used to take
advantage of them:

 C>LN IND=a.ind
or
 C>LN
 DSI-32 Linker V1.10
 Copyright (c)1985 Definicon Systems Inc.
 LN> IND=a.ind

 Object File Structure
 8.8.1 Introductions

 Object files are produced by assembler, AS, and may be
manipulated by the librarian, LIB. Object files are formed of
five distinct blocks:

 o Directory
 o Code
 o Static Data
 o Import Table
 o Export Table

Each block starts at a 512 byte boundary within the object file
and may occupy zero or more pages. The first block is always the
directory block and the rest of the blocks are arbitrarily
allocated by either that assembler or librarian.

 8.8.1.1 Directory

 Each directory block contains information for up to ten
modules. If more than ten modules are contained in the ojbect
file then further contiguous blocks are allocated. The directory
block is formed of three distinct sections: a header section, an
array of module information and a trailer (padding to 512 bytes).

 NAME BITS CONTENTS

 Header

 NEXTDIR 16 Pointer to next directory block, -1 if
 last block
 MODCOUNT 16 Number of modules in this block

 Array of module information (maximum of 10 entries per block)

 MODNM 64 Module name, left justified, space padded
 MODTYPE 3 Language (0 = pascal, 1 = assembler, 2 =C,
 3=fortran)
 STATUS 1 Module status (0=main, 1=not main)
 UNUSED 12 Reserved
 STARTADDR 32 Execution start address (offset from code
 start)
 CODELEN 32 Code size in bytes
 SBSIZE 32 Static Base data size in bytes
 SBBLK 16 Static base block number
 SYMLEN 16 Symbol table length (currently reserved)
 SBADDR 32 Static Base address (-1 if no SB data)
 CODEADDR 32 Code address (-1 if no code)
 EXPOBLK 16 Start block of export symbols
 IMPOBLK 16 Start block of import symbols
 CODEBLK 16 Start block of code
 SYMBLK 16 Start block of symbol table (reserved)

 EXPOLEN 16 Number of export symbols
 IMPOLEN 16 Number of import symbols

 NAME BITS CONTENTS

 FILLER 304 Reserved
 VERSION 16 Version number
 CHECK 64 Character string that contains 'CODEFIL '

 8.8.1.2 Code

 The code block contains the actual program code to be
executed. The code blocks are contiguous.

 8.8.1.3 Static Base data

 The static base data contains the data that is referenced by
the SB register of the 32000 series family. The static base
blocks are contiquous.

 8.8.1.4 Import Table

 NAME BITS CONTENTS

 INAME 72 The import symbol name
 ISIZE 32 Size of data (used when symbol is common)
 ITYPE 1 Symbol type (0=data, 1=entry point)
 ICOMM 1 Common flag (0=not common, 1=common)
 ISTAT 1 Static flag (0 = global symbol,
 1 = local symbol)
 UNUSED 13 Reserved

 8.8.1.5 Export Table

 NAME BITS CONTENTS

 ENAME 72 The export symbol name
 ESIZE 32 Byte offset within segment
 ESTAT 1 Static flag (0 = global symbol,
 1 = local symbol)
 UNUSED 2 Reserved
 ETYPE 1 Type (0 = SB data, 1 = ABS data, 2 = PC,
 3 = PC data 4 = PC)
 entry
 UNUSED 10 Reserved

 Executable File Structure
 8.8.2 Introduction

 Executable files are produced by linker, An executable file
is typically made up of serveral object files. They have and
extension .E32 and are loaded into the DSI-32 board by the
Definicon Loader. An executable file consists of five distinct
blocks.
 o General Information
 o Module directory
 o Code
 o Static data
 o Link tables

Each block starts at a 512 byte boundary within the executable
file and may occupy zero or more pages. The first block is always
the general information block and the rest of the blocks are
arbitrarily allocated by the linker.

 8.8.2.1 General Information

 The general information block contains information that is
common to all modules. Although also contained in this section,
the Global Module Table, is not physically part of the general
information section. It contains a copy of the module data that
enables the separate modules in the executable file to
communicate and pass data between themselves.

 NAME BITS CONTENTS

 EXECID 16 7699 plus Version number
 DIRBLK 16 Pointer to first directory block
 HEAP_LOW 32 Heap low address
 HEAP_HIGH 32 Heap high address
 STACK_LOW 32 Stack low address
 STACH_HIGH 32 Stack high address
 MAIN 32 Main module number
 MODCOUNT 32 Number of modules in the module table
 MODADDR 32 Module table load address

 Global Module Table (MODCOUNT of these items)

 SBAD 32 Static Base data
 LINKAD 32 Link table address
 CODEAD 32 Code address
 UNUSED 32 Reserved

 8.8.2.2 Module Directory

 The Module Directories are contiquous arrays of data, one
for each General Module Table entry (ie MODCOUNT of them). Eight
Module Directories are held in each 512 byte block.

 NAME BITS CONTENTS

 MODNM 64 Module name (left justified, space padded)
 MODTYPE 3 Reserved
 UNUSED 13 Reserved
 STRTADDR 32 Execution start address (offset from
 code start)
 SLEN 32 Length of static base data in bytes
 LLEN 32 Length of link table in bytes
 CLEN 32 Length of code in bytes
 SYMLEN 32 Reserved
 SADDR 32 Static base data start address
 LADDR 32 Link table start address
 CADDR 32 Code start address
 LBLK 16 Link table start block number
 CBLK 16 Code start block number
 SYMBLK 16 Reserved
 SBLK 16 Static base start block number
 UNUSED 112 Reserved

 8.8.2.3 Code

 The code blocks contain the actual code that belongs to the
module.

 8.8.2.4 Static Base

 The static base blocks contain the data that is referenced
by the series 32000 microprocessor's SB register.

 8.8.2.5 Link Table

 The link table blocks store the linkage information for each
module. The link table information allows the external addressing
mode of the series 32000 microprocessors to determine either the
absolute address of a data item or the module and offset of a
procedure in another module.

