

WCW

MG-l Owner Operator Guide

Whitechapel Computer Works Ltd.,
75 Whitechapel Road,

London E1 lDU.

© Whitechapel Computer Works reserves all rights.

ii wcw

Table of Contents

Chapter 1—«Preface .. 1.1

Chapter 2——lntroduction ... 2.1

Chapter 3—System Description. .. 3.1
3.1. Introduction. ... 3.1
3.2. The Hardware. .. 3.1

3.2.1. The Computer Unit. ... 3.1
3.2.1.1. The Processors. .. 3.2

. 3.2.1.2. Slave Processors. .. 3.2
3.2.1.3. Memory Handling. ... 3.3
3.2.1.4. Floating Point Operations Handling. 3.5
3.2.1.5. Interrupt Handling. .. 3.5
3.2.1.6. Input/Output Handling. ... 3.5

3.2.2. The Monitor. ... 3.6
3.2.3. The Keyboard. .. 3.6
3.2.4. The Mouse. ... 3.7
3.2.5. The RS—232 C Port. .. 3.7

3.3. The Software. .. 3.7
3.3.1. The Shell. ... 3.7
3.3.2. The Utilities. ... 3.7
3.3.3. The Kernel. .. 3.8
3.3.4. The File System. .. 3.8

3.4. The Window Manager. .. 3.9
3.5. MG-l Graphics. ... 3.10

3.5.1. Rasterops .. 3.10
. 3.5.2. The Graphics Library. ... 3.11

3.5.3. High Level Graphics Packages. ... 3.11
3.6. Options. ... 3.12

3.6.1. Memory Expansion. .. 3.12
3.6.2. Hard Disk Configurations. .. 3.12
3.6.3. Ethernet. .. 3.12
3.6.4. Peripheral Expansion. ... 3.12

Chapter 4———Installation ... 4.1
4.1. Setting up the MG-l. .. 4.1
4.2. Floppy Disks. .. 4.2
4.3. Installing the Bus Adaptor. .. 4.3
4.4. Installing Expansion Cards. .. 4.3

Chapter 5~Getting Started ... 5.1
5.1. Powering Up. .. 5.1

i . 5.2. Bootstrap Options. ... 5.1
5.3. Loading from Hard Disk. .. 5.2

WCW iii

5.4. Loading from Floppy Disk. .. 5.2
5.5. Monitor. ... 5.2
5.6. The fsck System Checker. .. 5.2
5.7. The stty command. ... 5.3
5.8. Using the Keyboard. ... 5.3

5.8.1. The Typewriter Area. ... 5.3
5.8.2. Numeric Keypad. ... 5.4
5.8.3. Cursor Controls. .. 5.5
5.8.4. Function Keys. .. 5.5
5.8.5. Control Sequences. ... 5.5
5.8.6. MG—l Keycodes. .. 5.6

5.9. Setting the Clock. ... 5.6
5.10. Powering Down. ... 5.7

Chapter 6—GENIX ~— An Overview .. 6.1
6.1. Introduction. ... 6.1
6.2. Portability. .. 6.1
6.3. The File System. .. 6.1
6.4. Selecting a Shell. .. 6.4
6.5. Using the Shell. ... 6.4
6.6. Generation of Argument Lists. ... 6.5
6.7. Command Groupings. ... 6.5
6.8. Input/Output. .. 6.6
6.9. Programming the Shell. ... 6.7

6.9.1. Shell Scripts. ... 6.7
6.9.2. Positional Parameters. ... 6.7
6.9.3. Control Flow. .. 6.7

6.10. Process Control. ... 6.8
6.11. Graphics Facilities. .. 6.8
6.12. The On—line Documentation and Learning Aids. 6.8

Chapter 7~—A GENIX Session ... 7.1
7.1. Introduction. ... 7.1
7.2. Login. .. 7.1
7.3. A GENIX Session. ... 7.1

7.3.1. Determining directory position: pwd .. 7.3
7.3.2. Creating a directory: mkdir .. 7.3
7.3.3. Creating a file: cat > .. 7.3
7.3.4. Appending to a file: cat >> ... 7.3
7.3.5. Viewing the contents of a file: cat .. 7.3
7.3.6. Viewing the contents of a file: more ... 7.4
7.3.7. Changing directory position: cd ... 7.4
7.3.8. Using the line editor: ed .. 7.4
7.3.9. Directory listings: ls ... 7.5
7.3.10. Moving a file between directories: mv 7.5
7.3.11. Renaming a file: mv .. 7.6
7.3.12. Copying a file: cp .. 7.6
7.3.13. Removing a file: rm .. 7.6
7.3.14. Removing a directory: rmdir .. 7.6
7.3.15. Creating a Shell Script. .. 7.7

iv W’C3%?

. 7.3.15.1. The Use of Positional Parameters. 7.8
7.3.15.2. Executing a Shell Script. .. 7.8

7.3.16. Compiling and running programs. .. 7.8
7.3.17. Sending messages: mail .. 7.9
7.3.18. Log Out. ... 7.9

Chapter 8—Interactive Graphics .. 8.1
8.1. Introduction. .. 8.1

8.1.1. Uses of Interactive Graphics. .. 8.1
8.1.2. Raster Scan v Random Scan. .. 8.1
8.1.3. The MG~1’s Graphics Capabilities. .. 8.1

8.1.3.1. The Screen. ... 8.1
8.1.3.2. The Cursor. .. 8.2
8.1.3.3. Rasterops. .. 8.2

8.1.4. Methods and Techniques. .. 8.3
8.1.4.1. Plotting and Coordinate Systems. 8.3

. 8.1.4.2. Transformations. .. 8.3
8.2. Basic Methods. .. 8.4

8.2.1. Introduction. ... 8.4
8.2.2. Point Plotting. ... 8.4
8.2.3. Line Drawing ... 8.4
8.2.4. Moving the Brush. .. 8.4
8.2.5. Curve Generation. .. 8.4
8.2.6. Solid Area Filling. .. 8.5
8.2.7. Character Generation. ... 8.5
8.2.8. Scan Conversion. ... 8.6
8.2.9. Transformations. .. 8.7
8.2.10. Clipping. ... 8.7

8.3. Basic Interactive Techniques. ... 8.7
8.3.1. Introduction. ... 8.7
8.3.2. Control Techniques. ... 8.8

8.3.2.1. Type-in Box. ... 88
8.3.2.2. Cut-and—paste Buffer. .. 8.8

0 8.3.2.3. Icons. ... 8.8
8.3.2.4. Split—screen Controls. .. 8.8
8.3.2.5. Tiled Windows. .. 8.9
8.3.2.6. Overlapping Windows. .. 8.9
8.3.2.7. Scrolling. .. 8.9
8.3.2.8. Fixed Menus. .. 8.9
8.3.2.9. Pop-up Menus. .. 8.10
8.3.2.10. Pull-down Menus. ... 8.10
8.3.2.11. Filing and Retrieval Techniques. 8.10
8.3.2.12. Command Undo. .. 8.11
8.3.2.13. Help and Warning. ... 8.11
8.3.2.14. Cursor changes. .. 8.11

8.3.3. CAD and Draughting Techniques. ... 8.11
8.3.3.1. Endpoint Placement. ... 8.11
8.3.3.2. Object Selection. .. 8.12
8.3.3.3. Creating and Selecting Groups. 8.12

O 8.3.3.4. Rubber-band Operations. .. 8.12

WCW v

8.3.3.5. Moving and Copying. .. 8.13 .
8.3.3.6. Clean—up after Editing. .. 8.13
8.3.3.7. Scaling. .. 8.13
8.3.3.8. Rotation. .. 8.13
8.3.3.9. Curve Editing. ... 8.14
8.3.3.10. Multiple Simultaneous Views. 8.14
8.3.3.11. Undoing Geometric Operations. 8.14

8.3.4. Text Manipulation. ... 8.14
8.3.4.1. Text Entry. ... 8.14
8.3.4.2. Text Selection. ... 8.15
8.3.4.3. Changes in Format. .. 8.15
8.3.4.4. Graphics Text. ... 8.15

8.3.5. Modelling Techniques. .. 8.15
8.3.5.1. Editing the Model ... 8.16
8.3.5.2. Regenerating the Display. .. 8.16
8.3.5.3. Continuous Process Simulation. 8.16

8.3.6. Image Manipulation Techniques. ... 8.16 .
8.3.6.1. Painting. ... 8.16
8.3.6.2. Image Editing. ... 8.16
8.3.6.3. Undoing Image Manipulations. 8.16

8.3.7. Animation Techniques. ... 8.16
8.4. Device Independent Graphics Systems. .. 8.17
8.5. The Window Manager .. 8.18

8.5.1. Introduction. ... 8.18
8.5.1.1. The Panellist Element .. 8.18
8.5.1.2. The Window Manager Element 8.18
8.5.1.3. The Tool Library Element .. 8.18

8.5.2. Window Control. ... 8.19
8.5.3. Cursor Behaviour. .. 8.19
8.5.4. Input Control. ... 8.19
8.5.5. Creating Windows. ... 8.19
8.5.6. A General Viewing Capability. ... 8.19

8.6. Interactive Applications. .. 8.20 .

Chapter 9-—System Administration ... 9.1
9.1. Introduction. ... 9.1
9.2. System Management and the Superuser. ... 9.1
9.3. Root Password. .. 9.2
9.4. Adding new Users: newuser ... 9.2
9.5. Removing Users .. 9.3
9.6. System Integrity .. 9.3
9.7. The fsck Program. .. 9.3
9.8. Daemon Processes ... 9.4
9.9. Disk Space ... 9.4
9.10. The df command. ... 9.5
9.11. The quot command. .. 9.5
9.12. The du command. ... 9.5
9.13. File Systems and Archiving. .. 9.5
9.14. Formatting a Floppy Disk: fdfmt ... 9.6
9.15. Creating a Floppy Disk File System: mkfs ... 9.6 .

vi WCW

. 9.16. Mounting a Floppy Disk File System: mount 9.6
9.17. File Transfer to Floppy Disk cp or mv .. 9.6
9.18. File Transfer from Floppy Disk: cp or mv ... 9.7
9.19. Unmounting a Floppy Disk File System: umount 9.7
9.20. Archiving and Backup. .. 9.7
9.21. Archiving to Floppy Disk: flar c .. 9.7
9.22. Restoring Archived files: flar x .. 9.8
9.23. Scheduling Backups: dump ... 9.8
9.24“. Restoring Dumped Files: restor ... 9.8
9.25. Monitoring Processes: ps .. 9.9
9.26. Communication in a Multi-User Environment. 9.10
9.27. Message of the Day. .. 9.10
9.28. Software Administration. ... 9.10

Chapter 10——Security ... 10.1
10.1. Introduction. .. 10.1

. 10.2. The Superuser. ... 10.1
10.3. Passwords. ... 10.1
10.4. System Security. ... 10.1
10.5. User Security. .. 10.2
10.6. File and Directory Access Permission. .. 10.2
10.7. Default Protections. .. 10.3
10.8. Changing Access Permissions. ... 10.3

Chapter 11—Troubleshooting .. 11.1
11.1. Introduction. .. 11.1
11.2. The System ROM. .. 11.1

11.2.1. Power—on Tests. .. 11.1
11.3. Forgotten Root Password. .. 11.1
11.4. Creating Additional File Space. ... 11.2
11.5. Runaway Processes. .. 11.5
11.6. The Diagnostic Floppy Disk. ... 11.5

. Appendix A—Physical Specifications. ... A.1
A.1. Processor .. A.1
A.2. Memory ... A.1
A.3. Display ... A.1
A.4. Raster Graphics Processor ... A.1
A.5. Input/Output ... A.1
A.6. Local Network ... A.1
A.7. Fixed Disk System .. A.1
A.8. Floppy Disk System A.1
A.9. Keyboard .. A.1
A.10. Pointing Device .. A.1
A.11. Environmental Requirements .. A.2
A.12. Cabling ... A.2
A.13. Physical Dimensions .. A.2
A.14. Weight .. A.2

. Appendix B—Serial Port Pin Allocations. ... B.1

WCW vii

Appendix C—ASCII Codes. ... C.1 ‘

Appendix D—Scan Codes ... D.1

Appendix E—Error Codes .. 13.1
13.1. Miscellaneous .. El
E2. DRAM Tests ... E.1

Appendix F—Reading List. .. F.1
.F.1. General. ... F.1
F2. GENIX. ... F.1
F3. The C Programming Language. .. F.1
F.4. The General Programming Environment. ... F.1
F.5. Hardware. .. F.1

viii WCW

Chapter 1
Preface

This MG-l Owner/operator Guide is designed to take you through the setting up and use of your
system. It is intended for use with other WCW documents, and with existing GENIX® documen~
tation. A pointer to these documents is given in Appendix F. This Guide should act as a basis for
further reading.
The major features of the MG—l are described. Particular attention is paid to its special features
such as its interactive graphics capabilities and its Window Manager. Experienced users of operat-
ing systems derived from UNIXCTE will be able to scan the Guide and by way of the Introduction,
System Description and Index. Chapters 6 and 7 cover the basic points of GENIX. The
Programmer’s Manual will highlight differences between GENIX and similar operating systems.
For the new user, the System Description and the operating software chapters should be the most
important. Chapter 8, 0n the interactive graphics, covers the MG-l’s image handling and design
capabilities, including the Window Manager. The System Administration and Security chapters are
of immediate interest when the MG~1 is to be used by a single user.
The Owner/operator Guide is divided into twelve main sections:

1. Preface

2. Introduction.

The Introduction is a brief survey of the MG-l. The hardware and software are introduced;
more detail is given in Chapter 3 and the GENIX chapters. The physical specifications of the
system are given in Appendix A. The Introduction should provide enough information for a
start to be made with the system.

3. System Description.

This section provides a more detailed coverage of the MG—l’s major hardware and software
features and can be read in conjunction with the MG'l Technical Manual. The GENIX
operating system is introduced, and attention is paid to the essentials of the interactive graph—
ics system. To complete this description of the system elements of the MG-l, a list of the
MG-l’s optional features is given.

4. Installation.

In order to set up the MG—l, certain site conditions should be met. These relate to such
details as proximity of power points, inter—unit leads, and the types of surface needed for the
mouse. The information needed to set up the MG-l and to install its optional features is
clearly laid out. See also the Technical Specifications in Appendix A.

5. Getting Started.

This section is a guide to starting up the MG-l, replying to the initial operating system
prompts, selecting start-up options, and closing down the system when the session is over.

UNIX is a Trademark of AT&T Bell Laboratories GENIX is a Trademark of National Semiconductor Corpora-
tion

WCW 1.1

Preface

6. GENIX —— An Overview.

This chapter is an introduction to the GENIX operating system, and should be read with the
next chapter. The basic features of the GENIX shells, the file and directory structures, the
graphics and window handling, and the utilities are introduced. Full details of operating
system facilities are available from the GENIX Programmer’s Manual.

7. A GENIX Session.

In this section, the most commonly used GENIX commands are introduced. File and direc-
tory creation and handling are covered, and command combinations are illustrated. Full
details of the operating system commands, the utilities and the C programming language are
available in the GENIX Programmer’s Manual.

8. Interactive Graphics.

The MG-l is designed as a high performance graphics workstation, and offers some very
powerful facilities. The Window Manager divides the screen into a number of “Virtual Termi-
nals”, each with its own specific job. For rapid graphics handling, the rasterop system system
is available. These and other graphics methods are described in this section. A interactive
techniques catalogue is also provided, in section 8.3.

9. System Administration.

GENIX offers some very powerful facilities for managing the MG—l. While the single user
may not need all of these facilities, all users should know how to monitor disk space and use
the backup and archiving systems. The role of the superuser is covered. Full details of these
systems are given in the GENIX Programmer’s Manual.

10. Security.

Each user, or group of users, may be granted or denied access to files. This section introduces
the idea of limitations on access permission as well as of passwords and user-ID codes. The
security duties of the superuser are discussed.

ll. Troubleshooting.

This section introduces the most commonly used hardware and software problem—handling
methods. The MG~1 Technical Manual and the GENIX Programmer’s Manual contain addi~
tional material.

12. Appendices.

A. Physical Specifications.
B. Serial Port Pin Allocations.
C. MG—l ASCII Codes.
D. Scan Codes.
E. Power On Tests.
F. Reading List.

This guide is not intended to be a comprehensive GENIX manual, especially in the case of the
utilities. These are described in full in the relevant operating system documents. For a comprehen-
sive list of documentation to be consulted, for both hardware and software, see the Reading List in
Appendix F.

1 .2 WCW

.

Chapter 2
Introduction

During the early 1970’s, the concept of the computerised office began to take shape. In order to
handle the work load involved, the mini-computer system dedicated to the single user was
developed. These systems were known as “workstations” but their high cost prohibited their
wide-spread use. With the advent of the microcomputer, truly personal systems were possible, but
in designing such systems around the need for low cost, many of the more impressive facilities were
lost. These facilities typically covered large-scale memory, high—resolution graphics, and fast
response time.
Increasingly, the distinctions between microcomputer, minicomputer and mainframe have become
blurred and finally, in 1984, the Whitechapel Computer Works MG-l system has succeeded in
unifying the ideals of ‘micro’ cost and ‘super-mini’ power.
Such a work station has to be as flexible and easy to use as a microcomputer, but have the
data-handling, graphics and communications facilities of a much larger system. The definitive com—
bination of these features is the MG-l.
To satisfy demand for large scale storage at low cost, the MG—l provides a basic system of main
memory and back~up devices which may be radically up-graded to increase capacity as and when
required. The MG~1 uses a 32-bit processor and the GENIX operating system. GENIX is the
National Semiconductor implementation of AT&T’s Bell Laboratories 4.1bsd UNIX. UNIX is
rapidly becoming the industry operating system standard. A major advantage of this operating
system is that applications are widely portable between machines.
To reduce the cost and physical size of the system, the MG—l is constructed around a single-board,
microcomputer—style architecture, using the latest VLSI technology (Very Large Scale Integration);
for all its processing power, the MG-l can compete with many PC systems for price. The implica—
tions of this development are significant: users need no longer share minicomputers. Traditional
time sharing operations can be replaced by distributed computing at an easily justifiable cost.
In short, the MG-l Work Station offers startling cost—efficiency, compact size, user—flexibility, and
a number of special features. These include interactive “rasterop” graphics and full graphics
library, Window Manager, expansion card facilities via an IBM PC® compatible mother board,
and the Ethernet local area networking system.
Many of the problems of the less elegant earlier systems have been overcome by the MG-1. For
example, graphics handling was often slow: the MG-1’s raster system uses rectangular arrays of
pixels which can be rapidly handled by their own dedicated hardware. The combination of GENIX
and IBM PC expansion cards solves the problems of limited device availability. This option, and
the Ethernet networking system which can combine up to 200 M04 stations, offers a very high
level of site flexibility. To improve data handling, traditional keyboard input may be supplemented
by the mouse which is a standard MG—l feature. As a further improvement to the working environ—
ment, the MG—l is virtually silent.
The MG-1 and its operating system is a truly powerful combination.
The major features of the system are as follows:

Display.

The display is a landscape format 1024><800 pixel system rated at 80 dots per inch. This
provides a high quality image which, because of the MG~1’s high image refresh rate (57 Hz),
remains flicker-free. For rapid graphics handling, the MG—1 supports “rasterops”. The idea of
the raster is explained in section 3.5.1, and in Chapter 8. The display is a bit—mapped system
refreshed from the main memory, and uses a similar memory paging system to the Memory

IBM PC is a registered trademark of International Business Machines.

WCW 2.1

Introduction

Management Unit. Accordingly, the graphics uses the memory in the most efficient way
possible.

Memory.

The MG~1 has a standard 0.5 Mbyte main memory expandable in 0.5 Mbyte or 2 Mbyte units
to a maximum of 4 Mbytes or 8 Mbytes of real memory, held within the standard enclosure.
This provides up to 16 Mbytes of paged Virtual Memory per program. This gives excellent
data processing and graphics handling facilities, controlled by a highly sophisticated Memory
Management system. The concept of a memory “page" is described in section 3.2.1.3.

Processor.

The MG-l runs on a 32—bit National Semiconductor NS32016 processor (Central Processing
Unit) rated at 8 MHZ clock rate. Floating point data handling is standard, using the NS32081
Floating Point Unit. The NS32082 Memory Management processor handles all memory tran-
sactions from the CPU to provide a highly efficient demand paged memory system. The CPU
runs a 24—bit address bus allowing a Virtual Memory capacity of 16 Mbytes (224 addresses).

Disk System.

Standard features are a 10 Mbyte hard disk and a 0.8 Mbyte floppy disk system supporting
5.25" double—sided, double-density, soft—sector, 96 tracks per inch disks. A variety of larger
hard disk options are available. As an option, a Streamer Tape system is available which
replaces the floppy disk drive. GENIX offers full fiar format archiving and library facilities for
the down~loading of data from hard disk to floppy disk or streamer tape.

Operating System.

The MG—l supports GENIX, a full UNIX system with Berkeley 4.1bsd enhancements. The
operating system provides virtual memory handling, multi»tasking priority control, input and
output operations, and user interaction. GENIX provides a large number of utilities such as
text editors, C and Assembler programming, compilers, comprehensive on—line documenta-
tion (the extent of which depends on the hard disk in use), and interactive calculator facilities.
Other programming languages such as FORTRAN 77 and Pascal, are optional. GENIX will
support a wide range of business software packages such as advanced word-processors and
spread-sheets, and the IBM PC expansion cards will allow GENIX access to one of the
world’s largest computing markets.

Keyboard.

The IBM PC-compatible QWERTY—style keyboard is a standard feature of the MG-l provid-
ing 83 keys, including 10 programmable function keys, and adjustable typing angle.

Mouse.

The mouse is a standard MG-l feature and allows user manipulation of screen images and
windows.

Expansion Ports.

2.2

Two expansion ports are provided. The memory expansion port will accept up to seven 0.5
Mbyte memory cards or up to three 2 Mbyte cards, thereby up—grading the standard memory
to either 4 Mbytes or 8 Mbytes. The general purpose expansion port allows direct access to
the buffered system bus, and allows installation of an IBM PC mother board which will hold
up to three cards. The availability of IBM PC cards for the MG—l opens up a huge range of
facilities at low cost.

WCW

Introduction

Communications.

The optional IEEE 802.3 Ethernet networking controller allows up to 200 stations to be
linked together to create a communications and time-sharing network. Even large scale
data objects may be rapidly transmitted as the system has a ll) Mbit per second transfer
rate, and interfaces directly with the processor’s address/data bus.

RS-232 C Port.
The single RS~232 port is a serial l/O interface between the MG—l and such peripheral
devices as line printers, plotters and other terminals. Software drivers allow the con—
nec'tion of further serial devices through the expansion card slots.

MG-i GENIX.

The great majority of the operating system provided with the MG—l is standard GENIX.
Because the system is based on such revolutionary architecture, there are invariably some
differences due to hardware factors. These are detailed in full in the GENIX Programmer‘s
Manual. Experienced users should pay attention to the MG-l Instruction Set, especially when
using commands relating to the graphics facilities or the 1/0 devices. A number of other

. operations involve the use of commands specific to the MG—l, for example archiving. These
commands are explained in full in Volume I of the GENIX Programmer‘s Manual.
The GENIX internal on—line documentation is available to any user with a hard disk
configuration greater than 10 Mbytes. The full size version of the manual amounts to l.4
Mbytes and is therefore only implemented on the larger systems. Chapter 11 of this manual
lists the files containing the on—line manual and other ‘expendable’ material. These files may
be deleted in order to free disk space.

WCW 2.3

Chapter 3
System Description.

3.1. Introduction.

The ideal workstation should incorporate a number of essential design principles: it should act as a
general data processing system with a wide range of software for program design, text handling,
and graphics; it should have a high degree of localised intelligence for the handling of specific tasks;
it should be capable of implementing a creative design process involving more than one potential
user; it should be responsive to the needs of the specific user without compromising larger scale
objectives; it should be capable of handling data on many levels; and it should be physically robust
enough to withstand user conditions that may be far from ideal.
The ways in which these principles have been built into the MG-l will be covered in this section.
An attempt has been made to describe many of the major concepts involved in a system of this
complexity, but reference should be made to the Reading List in Appendix F for further details.

Figure 3.1. The MG-l Personal Workstation.

3.2. The Hardware.

3.2.1. The Computer Unit.

The computer unit is the central component of the system, and contains all of the memory, proces~
sors, communications systems, expansion card facilities, Input/Output ports, and the power supply.
The unit as a whole measures approximately 50cms.><15cms.><45cms., and is strongly enough built
to support the weight of the monitor unit. It may stand on its side where work surface space is
limited.

Located on the rear panel of the unit are three expansion slots, and sockets for the IEEE 802.3
Ethernet system, serial RS—232 C port, the mains power supply, and the fuse holder. The single,
quiet cooling fan is located inside this rear panel, and should not be obstructed.
On the right—hand side of the front panel is the Power—Up button. Above it is the Power—On LED
(light-emitting diode). The power-down routine is handled under program control, so the machine
cannot be switched off accidentally.
To the left of the Power-Up button is a flap covering the keyboard socket, the mouse socket, and
the Diagnostic LED. The use and operation of this LED is described in Chapter ll.
WCW 3.1

System Description.

Figure 3.1. The Computer Unit.
Directly above this flap is the floppy disk drive or the tape streamer drive, depending on the
configuration in use. Next to the floppy disk drive is the hard disk drive. The tape streamer and the
hard disk systems have a range of capacities, both starting at 10 Mbytes.
The precise details are listed in Appendix A, Physical Specifications.

3.2.1.1. The Processors.

The MG-l’s system logic is supported by the National Semiconductor Series 32000 chip set,
comprising the following:

1. NS32016 Central Processing Unit (CPU). This processor is designed to support high perfor—
mance multiprogramming, and controls all high speed priority switching and process control.
It is designed to supply processing power to users needing large amounts of address space for
large programs or data objects. The 32016 supports a 16 bit data and 24 bit address bus
supplying 16 Mbytes of Virtual Memory per program.

2. NS32082 Memory Management Unit (MMU). This unit provides the hardware required to
support a demand paged virtual memory system. The logical memory is organised as a series
of pages which map either onto physical page frames or onto areas of memory held on
peripheral memory devices such as disk drives. Peripheral memory pages are automatically
swapped into main memory at a rate hardly detectable by the user.

3. NS32201 Timing and Control Unit (TCU). The TCU provides the system clock (rated at 10
MHz) and all processor control operations.

4. NS32081 Floating Point Unit (FPU). This extends the instruction set of the CPU to include
fast 32 and 64 bit floating point operations.

In addition to the above, there are a number of processors dedicated to I/O functions, Direct
Memory Access control, and Interrupt control. These are covered in more detail later.
A primary feature of the MG-l’s processor set is the high degree of correspOndence between the
system architecture and high level language operation. There is a general lack of processor instruc—
tions and addressing modes that would interfere with the smooth running of high level compilers.
In addition, the MMU includes hardware support for a major de~bugging tool: “breakpointing”
halts a program at a particular instruction or data access point, and examines the state of the
program to determine the cause of irregular behaviour.

3.2.1.2. Slave Processors.

The MG-l controls many of its functions through two “slave processors” which allow operations
that would not be permitted by conventional integrated architectures. These slave processors,

.1

which are unique to the Series 32000® are the Memory Management Unit and the Floating Point .

Series 32000 is a trademark of National Semiconductor Corporation.

3.2 WCW

System Description.

Unit. Communication between the CPU and the slave processors occurs by way of a very fast
protocol that remains transparent to the user.
The major advantages of this architecture relate to software adaptability. If these slave operations
ever become integrated into the CPU through advances in hardware engineering, software
developed under the slave system will still run, and in fact will run much more quickly. Software
developed before the advent of the slave system can be run simply by removing the modules that
were originally necessary to emulate the operations now performed by the slave processors.

Further details of the MG~1’s processors can be obtained from references in the Reading List.

3.2.1.3. Memory Handling.

The Series 32000 chip set is based on a linear memory architecture, supports page—based mapping,
and provides a demand-paged virtual memory system.
The total number of physically addressable memory locations (bytes) is the “physical address
space”. This is defined by the Main Memory physically available to the system; the MG-l supplies
up to 8 Mbytes of accessible Main Memory depending on the expansion cards in use. The number
of locations that a program can possibly address is the “logical address space”. In thze case of a
system such as the MG- 1 which has a 24 bit address bus this amounts to 16 Mbytes (224 bytes). It
is the logical address space that actually defines the memory architecture.
Where the individual bytes are accessed by consecutively numbered addresses, the memory is
termed “linear”. However, the bytes may be clustered into “segments”; when this is the case, each
address consists of two parts, the segment address which defines the group of bytes involved, and
the “displacement” or location of the actual byte within the segment. This type of memory organi—
sation is well suited to the modern DP environment as modular programming relies on such seg—
mented data handling systems.
The MG-l’s NS32000-based memory is segmentally organised into 512 byte “pages”. These are
small enough to be flexible in the context of the variable sized segments used by programs, but
large enough to offer an effective code protection system.
The action of translating a logical address into a physical address is called “mapping”. Where the
logical and physical address spaces are the same size, there is a direct relationship between a logical
address and a physical address. In a multiprogramming environment, where processes operate
concurrently, the user would have to ‘manually’ ensure that the memory dedicated to one process
did not overwrite that dedicated to another.
Where the logical space is much larger than the physical space, as is the case with the MG—l,
mapping operations are much more complex. The Series 32000 breaks the logical space of 16
Mbytes down into 32,768 pages, each of 512 bytes.
The physical address space is similarly broken down into a number of 512 byte units called “page
frames”. This means that a logical page can map straight a physical page frame. Each process
initiated by the user has its own mapping table which contains the appropriate logical and physical
addresses, and a code listing the protection attributes which limit access to areas of memory. This
means that there is no danger of one program over—writing another.
The condition of the logical address space being larger than the physical address space is termed
“Virtual Memory”. This is an important feature of the MG-1, and gives the impression that the
memory available to a program is much larger than is really the case. This is because logical
memory pages are often mapped onto locations that are really held on peripheral memory devices
such as disks. This process, called “page swapping”, is necessary because while the 16 Mbytes
logical memory contains 32,768 pages, a 4 Mbyte physical memory contains only 8,192 page frames.
Thus only a fraction of the logical addresses may be mapped instantaneously and directly onto
physical Main Memory locations at any one time. These mapping and page—swapping operations
are handled by the 32082 Memory Management Unit, at a rate that is hardly detectable to the user.

The MG~1’s NS32000 based memory is thus managed in such a way as to provide the highest degree
of processing power, while reducing the cost to a minimum.

WCW 3.3

System Description.

VIDEO
OUTPUT

CURSOR
CONTROL

l/O BUS

I; [MOUSE
KEYBOARD

PR
OC

ES
SO

R
BU

S

ASYNCHRONOUS
PORT

EXPANSION
SLOTS

Figure 3.2. System Architecture.

3.4 WCW

System Description.

3.2.1.4. Floating Point Operations Handling.

The NS32081 FPU is used to handle “real numbers” with fractional parts. Two sizes of floating
point number can be represented by this processor, the 32 bit “single precision” type, and the 64 bit
“double precision” type. Floating point numbers are held in the form:

number = sign X fraction (or mantissa) >< lOCxPonem

The advantage of using double precision floating point arithmetic is that the range of numbers is
greater because of the larger exponent element, and the precision is greater because of the larger
mantissa.
The FPU is 32 bits wide, and is broken down into a number of storage registers. Where double
precision floating point representations are required, the number is held in two consecutive,
catenated, registers.

3.2.1.5. Interrupt Handling.

The NS32202 Interrupt Control Unit (ICU) handles all conditions that alter the normal flow of
processing events. Interrupts are events that occur externally to the central processor (and are
distinct from “traps” which occur under program control), and are of two major types.
“Non—maskable” interrupts are initiated to preserve system integrity in the case of a catastrophe
such as a power failure. They cannot be disabled, and have the highest priority. “Vectored”
interrupts are assigned priorities and many are initiated by I/O devices, for example when a high
speed device is talking to a low speed device. The slower device must deal with one set of data
before accepting another, and so initiates an interrupt request.
A vector is a memory location containing the base address of an interrupt handling routine. The
ICU handles interrupt requests according to the priorities assigned and the efficiency with which
these operations are carried out largely determines the performance of the multiprogramming and
I/O systems. This is especially the case as active programs are frozen according to the current state
of the system. The CPU ensures that the system is unchanged when the program is reactivated.

3.2.1.6. Input/Output Handling.
The 1/0 system is the interface between the processors and the outside world, and in the MG-l is
highly integrated into the processor and memory system. The Series 32000 chip set supports a
“memory mapped” I/O system in which peripheral input and output devices are considered to be
a part of the memory so as to allow the full range of processor addressing modes.
The system works by assigning a number of registers to each l/O interface. These registers respond
to read and write commands in exactly the same way as other areas of memory. Therefore tests or
modifications on the contents of the I/O interfaces can occur in situ without involving movements
to and from memory.
Standard memory protection operations apply to I/O registers. This system, plus the UNIX integra»
tion of file and device handling radically improves performance.
Linking the various devices is a buffered I/O bus which acts as the interface between the central
processors and the memory/video system, Input/Output Processor (IOP), Rasterop hardware,
bootstrap ROM, non-volatile RAM, Interrupt Controller, real—time clock, expansion ports and I/O
device controllers.
Generalised I/O operations cover control of the Mouse and keyboard input devices, the display
ouput device, which has already been described, and the memory—based I/O devices such as disk
drives and tape streamers. Keyboard and mouse events are handled by a dedicated Sabit IOP which
communicates with the CPU through a 128 byte dual~port RAM integrated into the IOP chip. A
major responsibility of the IOP is the translation of mouse movement into cursor movement
without the uneven and unpredictable response that many other UNIX systems provide. The CPU
monitors the current position and advises the IOP of the location of windows which might have
some bearing on cursor behaviour.
Window handling often involves changes to the cursor. Up to four cursor maps are stored in
memory, and the appropriate set of cursors is selected by the CPU. The cursor logic system is
controlled by the IOP chip, and is responsible for the control of the major cursor attributes, such

WCW 3.5

System Description.

as the Cursor Number (0 to 3), the (x,y) coordinates of the cursor within the display image, and the
position of the cursor’s “hot spot” pixel relative to the cursor origin. These attributes are used to
control the mixing of the cursor image with the screen image to provide an overlay of the two at the
appropriate screen position. Mixing may occur according to OR or XOR logic.
The IOP uses the 128 byte RAM to keep a record of the cursor’s movements, so that application
programs can see exactly where the mouse has been. In addition, the IOP contains code to provide
a simple ASCII keyboard facility, although the CPU under software control can override the IOP’s
existing Keycode-to-ASCII translation procedures.
The handling of memory—based I/O devices such as disk drives and tape streamer is based on a
centralised Direct Memory Access (DMA) controller which is interfaced to the system bus and
performs fast data transfer operations. In addition, any DMA devices on the expansion port are
handled by this controller.
The Ethernet port is provided with an integrated network controller which handles the IEEE 802.3
protocol and provides its own DMA services.
Devices attached to the IBM PC compatible expansion port are serviced by a bus adaptor which
performs signal timing and bus—width conversions, and provides buffering facilities.

3.2.2. The Monitor.

The MG—l display unit is a high resolution (1024X800 pixels) landscape format (ie width > height)
17" monitor using a “white phosphor” screen. The viewing angle is adjustable by way of the knobs
at the side of the screen which raise or lower the foot at the back. This feature, plus the two metre
cable attaching the display to the computer unit, means that the monitor can be adjusted to suit the
individual user. The brightness control is in the lower right-hand corner of the display unit.
The system is supported by a Display Processor, which in conjunction with a memory mapping
system supplies rapid image refreshing from any part of the MG—I’s memory. This direct memory
linkage, plus the high image-refreshing rate, gives a high quality, flicker-free image. For further
details of the MG~1’s display-handling system, see the “Processors” section, above.

177
7],,

Q
/

Figure 3.3. The Monitor.

3.2.3. The Keyboard.

The MG-l keyboard, like the display unit, is of an ergonomically high standard, comprising an
adjustable—angle unit attached to the computer unit by a three metre cable. The typing angle is
adjusted by way of the snap—lock feet at the rear of the unit.
The cable has two plugs: the first connects the keyboard to the computer unit. The second is used
as a Mouse signal relay when the Mouse is attached to the keyboard instead of the computer unit.
The keyboard has a high quality IBM PC layout, and consists of the Typewriter section, with the
standard QWERTY pattern, the ten programmable Function Keys, and the Numeric Pad, a total

3.6 WCW

System Description.

of 83 stations, all offering auto—repeat. All of the keys may be assigned character or command
sequences; full details are given in section 5.8.4.

3.2.4. The Mouse.

The Mouse is a graphical input device consisting of a roller and a set of three buttons. Menu
options or points on the screen (for example, windows) are selected by rolling the Mouse across a
flat, preferably non-shiny, surface. The rotation of the ball is encoded, and the displacement
transferred to the screen via the I/O processor of the computer unit. Commands are relayed via the
three Mouse buttons. The unit is attached to the keyboard or directly to the computer unit. If the
former arrangement is selected, both of the keyboard cable plugs must be used. The second is the
Mouse signal relay.
To use the Mouse, the unit is held in the palm of the hand with the roller on the work surface. The
middle three fingers are placed over the Mouse keys.

3.2.5. The RS-232 C Port.

The serial port is used to connect terminals, printers and a number of other devices to the MG—l.
Like all MG-l I/O peripherals, it is driven through the /dev directory, in this case /dev/ttysO. The
operating system supports a full range of flow control signals for device sensing and transmission
control. For full details, see the ‘sio’, ‘tty’ and ‘newtty’ references in Volume I of the GENIX
Programmer’s Manual.
In order to increase the number and variety of peripheral devices, the ‘acc’ facility can be used to
drive a two port asynchronous serial board through the IBM bus. The pin allocations for the serial
devices are given in Appendix B.

3.3. The Software.

The MG-l’s operating system is a National Semiconductor implementation of AT&T’s Bell
Laboratories System III UNIX, incorporating Berkeley 4.lbsd enhancements. Further details of
the UNIX environment are given in Chapters 6 and 7, and full details of the commands available
are given in the GENIX Programmer’s Manual. The graphics and window handling software are
described in this manual, especially in Chapter 8, and in the documentation listed in Appendix F.

All UNIX-derived operating systems comprise three basic elements, the kernel, the utilities, and
the shell.

3.3.1. The Shell.
The user passes commands to the kernel and utilities through the shell, of which there are two
provided, the C Shell and the Bourne Shell. Although there are differences in such areas as the
syntax of commands, system messages, and the symbol used as a system prompt, they operate in
much the same way and it is possible to switch from one to another.

The shell is the interface between the user and the facilities of the operating system, and is almost
exclusively a mechanism for interpreting commands that invoke other programs. Although the shell
has a few built-in facilities, almost all of the shell’s job is to activate programs external to the shell
itself. In addition to being a command interpreter, the shell is a programming language in its own
right, as conditional loops and other controloflow primitives are available. In common with many
programming languages, the shell allows the combination of commands, the use of string—matching
metacharacters such as “wild cards”, and the use of string—valued variables. Combinations of com—
mands may be held in executable text files.

3.3.2. The Utilities.
The first internal layer accessed by the shell is the set of utilities. These include programming
languages, text editors and formatters, communications packages, and graphics systems, for exam-
ple:

wcw ' 3.7

System Description.

1. The C compiler. C is the high level language in which most of UNIX is written. It is accom-
panied by a large library of standardised functions such as 1/0 routines.

2. A number of software development tools are supplied, such as the LINT program checker for
the C language, which traps syntax errors, portability problems, data type mismatches, and
other likely errors; and the M4 Macro Processor which acts as a front end to functionally
based languages such as C and FORTRAN

3. The YACC system (“Yet Another Compiler-Compiler”) is a system that will generate part of
a compiler, using a user-supplied description of the language system.

4. The SCCS Source Code Control System records versions of source code produced during
project deVelopment. For example, old versions of a program can be retrieved after editing.
SCCS also controls source code files where more than one programmer is working on a
system so as to prevent the same file being amended by two programmers at once.

5. The MAKE software maintenance system ensures that files requiring the update or availabil-
ity of other files can be generated automatically. A full system of inter—file dependencies can
be analysed with minimum effort for the programmer.

6. The NROFF and TROFF high quality document preparation systems format text for
typewriter-type terminals and phototypesetting systems respectively. Both accept lines of text
interspersed with lines of formatting commands which may control layout, heading and foot-
ing, pagination, paragraph labelling, font and pitch control, and special character facilities. A
macro facility allows the definition of command sequences using single identifiers.

7. A number of text processors are provided, such as the EDIT and EX line editors, the VI
screen editor, the SED stream editor, the TBL and EQN tabulated and mathematical text
formatters, and the REFER bibliographical system.

8. The DC interactive calculator is available for integer arithmetic. It may be programmed using
the BC compiler.

9. The GREP and AWK systems search for patterns in data, and initiate sequences of other
commands if the relevent patterns are found.

All of these utilities are described in greater detail in the GENIX Programmer’s Manual. There are
a large number of optional GENIX third party software packages available. These are easily
implemented and include their own documentation.

3.3.3. The Kernel.

Both the shell and the utilities depend on routines provided by the kernel.
The kernel communicates with the shell and the utilities through only 70 or so “system calls” or
entry points. Conventional operating systems running at the UNIX level of power often rely on
hundreds of such entry points, each controlled by masses of protocol, so the fewer the system calls,
the more efficient the operating system. These system calls service resource requests from both the
user’s program and the utilities, and in fact, UNIX does not distinguish between the two.
One implication of the small number of system calls is portability; inter—system compatibility is
determined by the system calls, and so UNIX programs are unusually portable.

3.3.4. The File System.
The kernel is responsible for all I/O device-handling, memory map control, file and directory
handling, and program execution. The kernel is based around a hierarchical, tree-structured file
system. Files are grouped together in directories of successive levels, and defined by a “pathway”
from the “root” directory. This file system treats I/O devices in the same way as files, and groups
the device handling routines in a directory called /dev. User files are in a directory called /users, and
may be sub—divided into grouped directories of lower levels. Public commands are held in a number
of directories such as /bin. Many of the file system elements are outlined in the ‘hier’ reference of
section 7 of Volume I of the GENIX Programmer’s manual.
This file structure is the basis of the entire operating system; the kernel is largely concerned with
implementing it, and the shell and utilities derive much of their power from it.

3.8 ' WCW

System Description.

Because the MG-l’s operating system is so well structured, yet variable in its resources, it is
possible to enhance the software with a number of powerful systems. Accordingly, Whitechapel
Computer Works have produced the Window Manager, and implemented a powerful graphics
handling system. These are outlined in the following sections.

3.4. The Window Manager.

The Window Manager is a basic part of the Whitechapel Computer Works’ program of UNIX
enhancement, and lies at the heart of the MG-l programming environment. The display screen is
handled as a series of rectangular windows.
The idea of multiple screen windows allows simultaneous use of several data sources, for example
in the concurrent display and control of multiple programs, or the examination of different areas of
a database or spreadsheet. This operates through the impression that each window is a separate
screen in its own right.

The Window Manager creates and manipulates windows on the basis that the user should have full
control over all existing windows while affecting the operating system kernel and any active applica-
tions as little as possible. To this end, the Window Manager is based on the following principles:
1. All existing windows must be active. Accordingly full access and operational control is avail-

able even when a window is partially or wholly obscured by other windows. Keyboard input
is directed to a window selected by the user.

2. Each window has access to the full set of user interface tools for scrolling, window sub—
division, and screen movement.

3. To avoid conflict with window based applications, the Window Manager instruction set is as
neutral as possible. For example, the mouse does not distinguish between its buttons for
many commands so as to avoid overlapping with application button—assignments.

4. The kernel is minimally involved. While it retains control over bit—map operations, these
relate to the lowest level handling of window primitives. Higher level routines such as the
window user interface are handled by the Window Manager. This arrangement has the advan-
tage of overcoming the problem of kernel scheduling delays.

5. Full interactive techniques are available to the application as the Window Manager does not
interfere with the standard range of MG—l operations.

6. The system meets the requirements of programmers as well as application users. These tend
to be less well defined, and require support from the full array of operating system develop-
ment tools.

Windows allow the use of multiple screen displays. As a screen management device, a window may
be kept in its active form on the screen or stowed as “icons". Icons are used to indicate the status
of windows currently in existance, but not necessarily in use.

All window controls operate through the mouse: windows may be enlarged or reduced, moved,
sub—divided, and assigned a lower or higher priority. Mouse button assignments are neutral so as to
avoid clashing with application-based controls.
Mouse movements are tracked across the screen by the cursor. Changes in the cursor reflect the
presence of different regions within the windows. Four 64X64 pixel cursor rasters are available.
The cursor may be trapped by specific processes when particular commands require uninterrupted
input.
Keyboard input is directed at the window currently assigned top priority. Such windows are called
“listeners", and only one may be active at a time. The Window Manager includes a full TFY
Emulator to emulate a standard UNIX character stream terminal.
Three types of window are available. “Full—function windows” operate through rapidly updated
bitmaps representing the data objects wholly or partially displayed in the window. “tty windows“
are updated from a character map rather than a bitmap. and are designed to handle applications
which require a standard keyboard terminal. This system is based on a “tty emulator" where “tty”
is a rather out~dated term standing for “teletype”. “Physical panel windows" are designed for use
in highly interactive applications where high—speed display updates are required. The application
writes directly onto the memory holding the bitmap. These windows are of full screen width, and

WCW ' 3.9

System Description.

may not be moved horizontally or reduced in priority.

Overall, the WCW Window Manager contains the kernel software appropriate to handling the
most primitive window elements; the Window Manager control system which translates these prim-
itives into user functions; a recommended instruction set to drive the software, which may be
user-redefined; and a full set of documentation.

3.5. MG-l Graphics.

The MG~1 is designed to operate as a high-standard graphics workstation as well as a generalised
data processing system. Special image-handling functions are provided by three basic elements, the
MG-l Graphics Library, the Rasterops control system, and the various high level graphics handling
packages.
Traditional interactive graphics systems rely on three components, a “frame buffer” or memory
area to hold the digital representation of the image; a series of display—control devices which act as
the interface between the memory and the screen image; and a monitor. The frame buffer is
supplied from the main memory, and because it is an intermediate device, it often causes a
significant reduction in performance.
The MG—l relies on a different and more efficient system. The image representation is supplied
directly from main memory, and the full range of graphics operations is thereby increased in speed.
Image representations are held in non—contiguous pages of Virtual Memory, and are stored and
mapped in exactly the same way as any other data object.
The heart of the graphics«VM combination is the Mapping RAM unit which holds the addresses of
the virtual pages and uses these to translate the logical addresses into physical addresses. This
means that graphics handling uses existing circuitry, and is fully integrated into the Memory
Management Unit. Because memory is used by both ‘standard’ and graphics applications, memory
control circuitry is provided so as to arbitrate between system access to memory and video “refresh—
ing”.
Video refreshing is the action of reading bits from memory and converting them to a video signal
to compensate for the image fading and to allow changes in the picture to be displayed smoothly.
The screen is refreshed 57 times per second to prevent image flicker. Video refreshing has priority
over CPU access but the two are so timed as to prevent noticable interference.

3.5.1. Rasterops

The rasterop hardware is at the heart of the MG—l’s powerful graphics capabilities. It consists of a
number of devices that enable logical operations to be performed between “rasters”. A raster is a
memory representation of a rectangular array of pixels where each of the pixels within the raster is
either off (for white) or on (for black). In the simplest terms, pictures are built up by switching
pixels to ‘on’.

Rasterops are logical operations performed between rectangles within tasters, where each rectangle
is defined by the cartesian coordinates of the displacement from the raster’s origin. This system
allows the identification of a rectangle in (x, y) terms irrespective of the raster’s position on the
screen.
Images are created by way of the graphics library or by manual pixel setting. By a process known
as scan conversion, the pixels to be set ‘on’ and ‘off’ are translated into raster form. Scan conver-
sion is an automatic procedure within the general set of raster handling routines.
Rasters may be manipulated by way of the 16 binary boolean logical functions to combine or
duplicate graphics objects, or to simulate image movement. These are listed in section 8.1.3.3.
Raster handling is obtained by using one or more of these sixteen available operations. A rasterop
involves two rasters, called “source” and “destination”, combines these by way of some function,
and places the result in “destination”. A simple rasterop is to combine the contents of two rasters.
Various techniques are available to cope with differences in the sizes of the source and destination
rasters. For example, where the source is smaller than the destination, the source is vertically and
horizontally copied to fill the destination, a process called “tiling”. Where the source is the larger
of the two, “clipping” displays only the visible segment.

3.10 WCW

System Description.

Operations are performed on the corresponding bits of source and destination rasters. It is there-
fore an easy matter to change a raster as well as moving it around the screen, simply by altering the
intensity value of particular pixels in memory.

3.5.2. The Graphics Library.

The Graphics Library provides “primitives” for the creation of graphical output such as points,
lines, arcs, circles and text characters, in raster form. Area filling is implemented to produce solid
black or white shapes.
The graphics library is designed to provide a set of fundamental operations for the higher level
graphics packages. Graphics library functions satisfy a number of basic requirements of a graphics
handling system, such as the naming and identification of rasters, and the production of primitives
while handling such problems as identifying “brush positions”, and image clipping.
All primitives are drawn from an initial brush position defined by the start pixel of the operation,
and end at a terminal brush position. Clipping occurs when the source image is too large to fit out
of the destination raster. The image is analysed for the identity and extent of its visible portion, and
the rest is clipped into the destination raster. The terminal brush position is retained, however, as
if no clipping had occured.
A second operation is the provision of arguments to the drawing function, so that the primitive
being drawn can be combined with the pixels of an existing destination raster.

3.5.3. High Level Graphics Packages.

The MG-l’s graphics systems provide a support environment for a variety of optional high level
graphics packages. These graphics systems provide routines written in such languages as FOR‘
TRAN, Pascal and C to handle device-specific l/O hardware where the objective is the provision of
devicesindependent graphics facilities. Because the basis of any high level graphics package is the
existing graphics control hardware, MG-l supported systems are based on raster imaging.
There are three general areas of interactive graphics handling, namely output, user-requested
input, and system management.
Output revolves around a number of standard graphics types and, often, an additional facility for
the creation of non-standardised objects. Images may consist of connected lines or rectangles
defined by arrays of points, or of closed polygons, or filled areas. Text may be handled by way of
fonts that define the size, shape and identity of the characters. By combining objects and text,
annotated diagrams or graphs may be created. A further facility may be a generalised drawing
facility which produces non-standard and device dependent output. The objective of this last facil-
ity is the provision of non-standardised functions in a standardised manner. While not wasting the
individual strengths of a specific hardware system, such high level graphics systems retain their
predictibility.

Groups of output primitives may be combined to form “segments” which may be manipulated as a
whole by way of an identifier. Segment manipulation covers image movement, size changes, rota-
tion, combination by way of Boolean operations, and visibility control. The segment approach
allows a small number of primitives to provide the basis of a whole screen. Output segments may
be stored on disk in sequential files.
These high level graphics systems may be combined with the Graphics Library and the raster
handling routines, to provide a comprehensive range of graphics handling facilities.
Output may often relate either to the full screen or to individual windows. Window control is based
on a series of transformations that map data onto physical areas of the screen. These transforma-
tions may be user—defined, except where the control of full size screen mapping is concerned.
Input routines operate on explicit user~requests. Data sent to the system may include coordinates
relating to a point or line, a single real value, a segment identifier, an integer relating to selection
of a menu option, for example, or a text string entered from the keyboard.

Workstation control routines are also provided, to include display and buffer up-dating, form
feeding for plotters, segment drawing from currently defined data, and message handling. An
error—handling system should return a full range of error messages.

WCW 3.11

System Description.

3.6. Options.

The MG-l supports a wide range of optional features. These are either standard devices or systems
which which have more than one possible configuration, or features which may be omitted com.
pletely without compromising the performance of the overall system. Options will include memory
expansion, a tape streamer, different hard disk capacities, the Ethernet networking system, the
IBM PC expansion cards, and the colour monitor.

3.6.1. Memory Expansion.

The standard MG-l main memory configuration is 512 Kbytes. However, the computer unit will
accept up to seven 512 Kbyte expansion cards, or three 2 Mbyte cards, raising the total to either 4
or 8 Mbytes.

3.6.2. Hard Disk Configurations.

The hard disk options begin at 10 Mbytes. This configuration does not include the on-line
programmer’s documentation, as the full version amounts to a total of 1.4 Mbytes. Documentation
is available on the higher capacity options, in progressive degrees of completeness. In order to free
disk space, documentation, games and other files may be deleted.

3.6.3. Ethernet.

Ethernet is a local area network (LAN) system which allows up to 200 MG—l workstations to be
connected together by way of 50 ohm cables of up to 500 metres length. If repeaters are used, more
than one 500 metre length can be used between terminals. Data transmission occurs at 10
Mbits/sec.
The IEEE 802.3 Ethernet communications port performs the link~level protocol functions and
inter-host network accessing together with memory management, error reporting, packet handling
and processor interface functions.

3.6.4. Peripheral Expansion.

The computer unit’s general purpose expansion port provides direct access to the buffered proces-
sor bus and the centralised Direct Memory Access (DMA) controller. By adding the IBM PC
motherboard, up to three expansion cards may be fitted. This board provides full emulation of the
IBM PC bus.
Data is translated from the MG~l’s 16 bit word to the IBM PC’s 8-bit word by using two consecu-
tive IBM words.
The 1 Mbyte IBM PC address space (strictly speaking 1 Mbyte minus 128 Kbytes) maps onto MG—1
address space as follows:

IBM PC OXOOOOO — OXDFFFF
MG—l OXDOOOOO ~ ()xDDFFFF

The 64 Kbytes of IBM PC I/O space maps onto MG-l address space as follows:

IBM PC OXOOOO - OXFFFF
MG'I OXDEOOOO — OxDEFFFF

The interrupt lines from the IBM PC expansion bus may be configured to drive a choice of five
interrupt inputs on the MG-1 interrupt controller.

3.12 WCW

Chapter 4
Installation

4.1. Setting up the MG-l.

The MG-1 computer unit should be located within 2.5 metres of a 13 AMP standard national grid
voltage power point.
The mounting surface should be clear of loose debris and adequate ventilation should be available
around the unit. In particular, do not cover the fan outlet at the rear of the unit.
When work space is limited, the computer unit can rest on its side or under the desk, or else the
monitor can rest on the computer unit.
Inspect all plugs and connectors to ensure that none of the pins are broken or bent.
Begin by ensuring that the mains power supply is switched OFF.
Connect the female plug on the mains supply lead to the socket on the left hand side of the
computer unit’s rear panel. Do not plug in the power supply at this point. Powering up the com~
puter will be covered in the next chapter.

MAINS AND FUSE HOLDER IBM EXPANSION SLOTS
\ /l
\ / iv

[:1

| f:] /C] a): C3

/ / \
ETHERNET RS 232 EARTH MONITOR

Figure 4.1. Rear Panel Connections.
Connect the monitor’s flying lead to the D socket on the computer unit rear panel marked “moni—
tor”. Slide the earthing clip of the monitor cable onto the Spade terminal located on the left hand
side of the monitor socket.
The knobs at the side of the monitor are used to adjust the viewing angle of the screen, which may
be tilted backwards from the vertical by upto 17°.
Connect the keyboard to the computer unit by attaching the shorter of the two leads to the D
socket marked “keyboard” beneath the front flap of the computer unit.
When the mouse is to be connected to the keyboard rather than directly to the computer unit, the
longer of the two keyboard leads is plugged into the D socket marked “mouse”. This arrangement
increases the area over which the mouse may be used.
If the mouse is to be attached directly to the computer unit, its lead should be plugged into the
“mouse” D socket, and the longer of the two keyboard leads is not used.
The keyboard has adjustable feet for altering the typing angle. Two positions are available, hor-
izontal and inclined. Applying outward pressure to the keyboard feet causes them to click into their
extended position which inclines the keyboard.

WCW 4.1

Installation

DIAGNOSTIC 0
LED s-e

POWER—UP
@ LED
@ POWER-UP

PUSH BUTTON

MOUSE KEYBOARD

Figure 4.3. The Keyboard Lead. .
Note that the mouse performs best when used on a surface that is not shiny or polished. This is
because enough traction must be available to translate each Mouse movement into rotation of the
ball bearing under the mouse.

4.2. Floppy Disks.

The MG-l’s floppy disk drive uses standard 5.25 inch, double-sided, double—density, soft-sectored,
96 tracks per inch (tpi) disks. Because disks are manufactured in standard form, they must be
“formatted” so that data structures specific to the MG-l can be stored and accessed. The format-
ting procedure is described in section 9.14.
Floppy disks are quite delicate and care should be taken to preserve them in order to avoid the loss
of valuable data. The following precautions should be taken:

Handle floppy disks in their protective jackets.
Do not expose them to electromagnetic fields such as generated by telephones or other
electrical appliances. Even the MG-l units may be capable of affecting disks, so do not place
them on the equipment.

4.2 WCW

Installation

Avoid exposing disks to direct sunlight or moisture.
Do not use paper clips on disks and use only felt-tipped pens for writing disk labels once they
have been affixed.
Do not touch the magnetic surface of the disks, and take care not to allow debris to come into
contact with the surface. A single scratch will ruin a disk.
Do not bend or fold disks, and take care to provide protective wrapping when mailing disks.

4.3. Installing the Bus Adaptor.
To install the_IBM PC bus adaptor, carry out the following instructions:
1. Ensure that the power is OFF. For power-down routines under software control, see section

5.10.
Remove the cover from the MG~1 computer unit by releasing the holding screws (located
underneath and to the rear of each side of the unit) and sliding the cover forward.
Remove (and retain) the fixing screws on the PC Bus supports located approximately one
inch in front of the left hand side of the monitor socket and ethernet socket.
Screw into each of the two PC Bus supports one of the adaptor supports supplied with the
adaptor unit.
Gently press the 64 pin DIN41612 male socket on the adaptor unit into the 64 pin DIN4162
female socket located approximately seven inches in front of the monitor and ethernet sock-
ets and running parallel to the front panel of the computer unit.
Secure the adaptor unit by screwing into the adaptor supports the two fixing screws removed
in step 4 above.

4.4. Installing Expansion Cards.
To install an IBM PC bus expansion card:
1.
2.
3.

5.
6.

Ensure that the power is OFF. See section 5.10 for power-down routines.
Choose any of the available expansion slots on the adaptor unit.
Remove the blanking plate on the back panel of the computer unit opposite the slot chosen
for the expansion card.
Snap the card guide supplied with the expansion card into the holes on the vertical support
panel opposite the slot.
Firmly press the expansion card into the slot.
Replace the screw, removed in step 3, to secure the bracket and card.

If the card being installed has configuration options these will be described in the documentation
supplied with the expansion card.

WCW 4.3

Chapter 5
Getting Started

5.1. Powering Up.

Powering up the‘MG-l requires two actions from the user:
1 Turn mains power ON
2 Press front panel ON button
There is a short delay, while diagnostic routines check the status of the system and the bootstrap—
ping procedure executes. The diagnostic LED illuminates briefly and the hard disk begins to run up
to full operational speed. The role of this diagnostic LED is described in section 11.2. After a delay
of about 15 seconds, the screen displays a sequence of regular memory diagnostic patterns which
indicate the status of the MG-l’s memory. These continue for about 10 seconds. The screen clears
to white and the following message is displayed:

Whitechapel Computer Works MG-t (dd-mm-yyyy)

The date indicates when the ROM software was issued.

As soon as the disk drive reaches full operational speed, the MG-l bootstraps the operating system
from track zero of the disk. During the bootstrap procedure the MG-1 displays the following
message together with an indication of system size:

Loading from hard disk
Boot: hd(0,0)vmunix

After 15 seconds or so, the screen clears and over the next two minutes the system displays the
operating system identifier, and details of the system configuration, administration and initialisa-
tion, then the operating system banner followed by the “login” prompt.
The first time a GENIX configured MG-l is powered up, the user can log in either as “root” or as
“guest”. To log in as root the user is advised to be thoroughly conversant with system administra~
tion (see Chapter 9) and system security (see Chapter 10) and to create a personal entry in the
password file for subsequent logins when the wide-ranging powers of root are not required.
To log in as “guest”, for the purposes of gaining initial hands~on experience, type “guest” and press
the <RETURN> key (labelled with a clockwise arrow). The user new to GENIX should now
read Chapter 6 and then work through the example session in Chapter 7.
For powering down at the end of a session, see section 5.10.

5.2. Bootstrap Options.

The MG~1 system ROM contains control routines which automatically load the operating system
from the hard disk into the main memory. This operation is known as “bootstrapping”. The ROM
also identifies problems that might prevent successful bootstrapping, for example memory
hardware faults.
In addition to the control and diagnostic routines provided by the ROM, various systems are
provided by the floppy disk supplied with the MG—l. The start-up routines include a bootstrap
menu which allows the user to specify the sequence of diagnostic routines activated, including
running the facilities on the floppy disk.
The default sequence of events involves the MG-l booting up from hard disk t but various
power-up options are available and are selected by interrupting the normal bootstrap process. If the
MG-l detects any character from the keyboard, or a <Ctrl><a> character from the RS-232 serial
port, at any moment between the power ON button being pressed and the operating system
identifier appearing on the screen, the bootstrap options menu is displayed.

wcw ' 5.1

Getting Started

Choose from one of the following:

0 — Boot from hard disk 0
1 ~ Boot from hard disk 1
2 — Boot from floppy disk
3 — Enter monitor
4 — Switch off

5.3. Loading from Hard Disk.

To load from a file other than the default file which is hd(0,0)vmunix, select the first menu option
by pressing numeric key ‘0’.
Then type the device name, the drive number followed by the partition number, and the pathname
of the file to be loaded.
The syntax of the response is:

<device>(<drive>,<partition>)<pathname>

Examples:

hd(0,0)vmunix
fd(0,0)vmunix
hd(1,0)vm.new

In the event of any of the files specified in this way containing errors, there is a full range of error
messages available.
In the event of the required file being stored on a second hard disk, option ‘1’ from the menu
should be selected. The user response is as outlined above.

5.4. Loading from Floppy Disk.

To load from a floppy disk, such as the diagnostic package supplied with the MG-l, insert the disk
in the drive, close the drive door and select option 2 from the bootstrap menu.

5.5. Monitor.

The WCW ROM debugger is a sophisticated monitor program that allows examination and patch—
ing of memory (both system and I/O) and processor registers. The range of options provided
should offer an adequate medical kit for the repair of memory~based problems.
To enter the ROM debugging monitor select option 3 of the menu. The “WCW Monitor” banner
appears on the screen and the system awaits user commands specifying memory areas for examina—
tion or modification.

5.6. The fsck System Checker.

The diagnostic routines activated during bootstrapping check on the status of the hardware and its
support software. As a further guide to system integrity, GENIX automatically runs the ‘fsck’
system. This activates an ‘interactive file system consistency check’ which determines whether a
variety of file attributes are fully consistent. For example, disk blocks may apparently be owned by
more than one file at once, or not accounted for at all, or else disk space reports may not tally.
In such cases, the fsck system proceeds to correct any problems, but requests user permission to
proceed in each case. This is because almost all such problems involve the loss of some data. A list
of all such data losses is given.
Where no errors are detected, the fsck utility reports on the number of files on the disk, and the
number of blocks free and currently in use.
More information on the fsck command is available in Chapter 9 and in section 8 of Volume I of the
GENIX Programmer’s Manual.

5.2 WCW

Getting Started

5.7. The stty command.

The ‘stty’ command sets l/O options on a current output terminal. A wide range of options may be
set, such as flow control, parity settings, echo on output characters, procedure killing facilities, and
character case mapping.
If no arguments are specified, the command produces a report on terminal speed (baud rate) and
those options whose current settings are different from their default values. A number of reporting
options are available, and the full range of stty options is very large.
The stty command is covered in more detail in section 1 of Volume I of the GENIX Programmer’s
Manual.

5.8. Using the Keyboard.

The MG—l keyboard is an input device which can be configured by the GENIX operating system to
specific user requirements. This section describes the standard default configuration. Certain
software systems may alter the keyboard: refer to the package documentation for application-
specific configurations.
The MG—l keyboard is divided into three sections: Typewriter Area, Numeric Keypad (incor-
porating cursor controls), and Function Keys.

UH

E
lli

J
lfl

H
E

ID
I

Figure 5.1. The Keyboard.

5.8.1. The Typewriter Area.

Key positions in the typewriter area of the MG-l keyboard are very similar to a standard
QWERTY typewriter. The <spacebar> performs an equivalent function to that on a typewriter.
When depressed, the <Caps Lock> key locks characters A to Z in the uppercase position. Pressing
the <Caps Lock> key again releases the uppercase mode for these characters. An LED within the
<Caps Lock> key lights up when the key is engaged.
Pressing either of the <Shift> Keys (hollow vertical arrows) shifts the keys in the typewriter area
of the keyboard into the uppercase mode. Alphabetic characters are then displayed as capital
letters, non-alphabetic characters in the typewriter area are displayed as the character shown in the
upper portion of the key.
The <Esc> key is often used in conjunction with other characters to exit from programs, terminate
activities, log out, or stop the movement of text on the screen.
The <RETURN> key, marked with a clockwise arrow, is used after typing a GENIX command to
indicate that the command is complete and must be executed.
The <backspace> key on the top row of keys, labelled with a back arrow, is used to correct typing
errors. The character immediately to the left of the cursor is removed each time the backspace is
pressed. Note that all MG-l keys offer auto-repeat, and that care should be exercised when

WCW 5.3

Getting Started

Figure 5.2. The Typewriter Area. -
deleting text. .

Note that the number ‘0’ and the letter ‘O’ are not interchangeable, and that the number ‘1’ and the
letter ‘1’ are also completely different.
The function of the remaining keys in the typewriter area are application-specific. Information on
these keys operating under specific software control can be obtained from the relevant software
documentation.

5.8.2. Numeric Keypad.

Pressing the Numeric Lock Key on the numeric keypad sets keys 0 to 9 to numeric mode. Pressing
the Numeric Lock again returns keys 0 to 9 to cursor control. An LED within the <Num Lock>
key lights up when the key is engaged.
The function of the <Delete> key is application specific and is defined in the Operating System or
Applications Program Manual.

Figure 5.3. The Numeric Keypad.

5.4 WCW

Getting Started

5.8.3. Cursor Controls.

The Cursor Control Keys may be used by some application programs to move the cursor around
the screen: The <Cursor Up> key moves the cursor one line up; <Cursor Down> moves the
cursor one line down; <Cursor Right> moves the cursor one character position to the right; and
<Cursor Left> moves the cursor one position to the left. All of these keys have an auto—repeat
action, and so will provide continuous cursor movement if required.
The <Home> Key moves the cursor to the top left corner of the display.
The <End> Key moves the cursor one position to the right of the last character on the line.
For details of the action of the <Pg Up> (Page Up), <Pg Dn> (Page Down), and <Scroll Lock>
keys refer to the Program Manual of the specific software package.

5.8.4. Function Keys.

The ten function keys labelled F1 to F10 are always under program control. Refer to the relevant
application Program Manual.
The Window Manager’s VTlOO emulator allows any of the MG—l’s keys to be reprogrammed. The
following sequence of commands should be used:

ESC[Pk;Ps;Pr;Pnp

where Pk is the scan-code generated by the key, as shown in Appendix D; Ps is the shift state that
must be used if the translation is to take place. The value of this parameter can be obtained from
the ‘include’ file <sys/panelevent.h>; Pr is the autorepeat flag, 1 for autorepeat, 0 for non—
autorepeat; and Pn is the string to be generated. For example, to set the function key F1 to produce

pwd
Is —I

the following sequence should be given:

% ESC[59;O;O;"pwd";13;"18 -l";13
P

where ‘13’ is the ASCII code for a line-feed.

hen
na

Figure 5.4. The Function Keys.

5.8.5. Control Sequences.

By convention, some keys have a special meaning when using GENIX. These include control keys
or sequences used to produce special GENIX characters that do not appear on the keyboard, and
various “escape” sequences used to exit from programs, terminate activities, log out, or stop the
movement of text (“scrolling”) on the screen. Angle brackets (<>) are used in this manual to

WCW 5.5

Getting Started

indicate particular keys.
When a “control” character is required, always press the <Ctrl> key first and hold it down while
the second key in the control sequence is pressed.
The default set of control characters is as follows:

<Ctrl><s> Pressing the “control” and “5” keys simultaneously will stop text from
scrolling.

<Ctrl><q> Restarts scrolling.
<Ctrl><d> Has several uses, for example: To log in and log out; To bring the

' system up from maintenance mode; To produce the End of File charac—
ter (EOF).

<Ctrl><z> To suspend a program that has been invoked by the C shell and return
to the command prompt.

<Ctrl><y> Suspend a program that has been invoked by the C shell when it next
attempts to read from the keyboard.

<Ctrl><o> Throwaway terminal output until another <Ctrl><o> is typed.
<Ctrl><x> Erase a line
<Ctrl><w> Erase a word
The <DELETE> key is used to abort a foreground progress.
The pipe character (|) is used in some advanced features of GENIX, for example the passing of
output from one operation straight into a second operation.
Exceptions to these general rules are detailed for each utility in Volume I of the GENIX
Programmer’s Manual.

5.8.6. MG-l Keycodes.

Following the power-up bootstrapping procedures, the MG—l keyboard is programmed by GENIX
to generate DEC VT100 key codes. The correspondence between keys on the MG-l keyboard and
the VT100 keyboard is:

VT100 key MG—l key
PFl F1
PFZ F2
PF3 F3
PF4 F4

. , — ENTER BREAK n/a
Ctrl SPACE (NUL) <Ctrl><@>

Ctrl ‘ (RS) <Ctrl><‘>
Ctrl 7 (US) <Ctrl><_>
Line Feed <Ctrl><j>

Tab <Ctrl>< >
No Scroll n/a

Setup n/a

Each MG-l keystroke is identified by the computer’s processors through the medium of ASCII
codes. A full list of these is given in Appendix C.

5.9. Setting the Clock.

At the beginning of the MG-l’s operational life, the clock can be set to correct the date and time.
Against the shell prompt, type:

%date yymmddhhmmss

where the optional ‘yymmdd’ element sets the last two digits of the year, the month number and
the day number. ‘hhmm’ sets the hour and minutes (on a 24 hour basis), and the optional ‘.ss’
element sets the seconds. If year, month and day are not given, they are set to the current values.

5.6 WCW

Getting Started

. This assumes that they were set when the system was first powered up.

5.10. Powering Down.

Option 4 from the bootstrap menu closes down the MG-l. Otherwise, type “of ” in response to the
shell prompt.

WCW 5.7

Chapter 6
GENIX —— An Overview

6.1. Introduction.

The GENIX operating system is a derivative of UNIX, developed by AT&T’s Bell Laboratories.
The MG-l’s operating system is the standard System 111 UNIX incorporating Berkeley 4.1bsd
enhancements, implemented on the Series 32000 chip set.
In common with all UNIX systems, GENIX consists of a kernel, a number of utilities, and one or
more shells, in this case the C and Bourne Shells. The salient features of these elements have been
laid out in the System Description chapter: the present chapter will cover some of these features in
more detail, and introduce the use of the shells, utilities, kernel, file system and multiprogramming
facilities. The loading of the operating system, and the various bootstrapping options were covered
in Chapter 5.

6.2. Portability.

The GENIX user operates the resources of the computer by entering commands through any of the
input devices, such as keyboard, mouse or serial RS-232 C port. Although it the kernel that handles
the physical resources of the computer, the user interacts with the shell first, the utilities second,
and the kernel last.

The shells are command interpreters, which pass user instructions to the lower level elements. The
utilities are self-contained packages which provide a set of commands designed to handle certain
areas of data processing activity, such as programming, text handling or communications.
The kernel is almost entirely hidden from view. It controls the allocation of CPU time, memory
space, and communication channels for the various tasks that system users may have running at any
particular time. It consists of a central supervisor and a number of low-level service routines which
take care of essential activities such as fetching characters from the keyboard, writing to memory
and examining the system clock.
The shell and utilities request services from the kernel through a number of fixed entry points or
system calls which act as ordinary subroutine calls. Entry points isolate the utilities from the
kernel’s internal system, and define a simple interface to the machine hardware.
Versions of UNIX frequently share the same basic set of entry points (system calls) and because it
is the system calls that determine compatibility, UNIX utilities and programs tend to be very
portable.

6.3. The File System.

The GENIX file system is shaped like an inverted tree. Directory (branch) and file (leaf) names
can be up to 14 characters long, and may include any combination of upper and lower case letters
and numbers. Do not use the slash (/) character or any punctuation marks except the full stop or
period.
Directories are used to group together related files. Each directory may include subdirectories
which may include their own lower level subdirectories; there is no limit to the depth of levels
within the directory structure.
The branches or leaves directly below the currently active directory are usually the only ones ‘in
view’ but changing to another directory involves a single command.
The user has almost complete freedom as to the structure of the directories.
Figure 6.1 shows part of a file system for two users, Richard (a programmer) and John (a technical
writer). Richard has two separate directories for his projects (the .c files contain program source
code) and John has a single directory devoted to his manual. John’s ‘manual’ could be a directory
containing files that are text sections. Slashes (/) are used to separate the segments of a file name.

WCW 6.1

GENIX ——- An Overview

Thus the full name or “pathname” of Richard’s draw.c file is: .

/users/richard/graphics/draw.c.

John’s manual directory has the following path:

/users/john/manual

The slash at the beginning tells the system to start the path at the “root”. This full name is seldom
needed however. The directories called “john” and “richard” are the “home” directories of the
two users, and it is within these directories that John and Richard will be positioned when they log
in. ‘
From John’s home directory he can refer to Chapter 2 of his project as manual/chapt2 (note the
absence of the initial slash since this search starts at John’s current directory, and not the root).
John can change his viewpoint with a ‘change directory’ command typed against the shell prompt:

% cd manual

Figures 6.1 and 6.2 indicate the structure of a typical GENIX system.

ttysl .

dev t

flp

memos

john chaptl

manual chapt 2

users chapt3

/(root) I,
database .

richard _ draw.c

graphics

_ plot.c

sh

bin

CP

Figure 6.1. Simplified Directory Structure.
A tree structure for files has the advantage that even if a user happens to maintain a large number
of files, a small sub-set only need be seen or thought of at any one time.

6.2 WCW

GENIX — An Overview

dev Special files for physical devices: system console,
terminals, disk drives, line printer. . .

bin Executable utility programs: compilers and assemblers,
program development

. lib Libraries of system utilities and sub-routines: FORTRAN
and C runtime support libraries, system calls, I/O routines

etc System data and utility programs restricted to system
manager: password file, log-in . . .

/
tmp Temporary (Scratch) files used by the various system

utilities: editors, compilers, assemblers. . .

bin Less used utility programs

tmp Less used temporary files

usr dict Word lists, spell checker

lib Less used library files

. man Directories to text files containing the full
GENIX programmer’s manual

user 1 User directory structure

users user 2 User directory structure

user3 User directory structure

user n User directory structure

Figure 6.2. Typical Directory Structure.

WCW 6.3

GENIX —— An Overview

Two additional directories are shown on Figure 6.1, /dev and /bin. Public commands held in these
directories contain the files responsible for the handling of peripheral devices such as the hard disk
drives, floppy disk drive, and streamer tape drive. Input/Ouput programming with GENIX is
simplified by the availability of files held in the /dev directory which require only normal file
read/write instructions for access to peripherals.
Figure 6.2 shows a typical file structure to be found on a GENIX system.

6.4. Selecting a Shell.

The MG-l’s default GENIX configuration is the C Shell, whose prompt is the °/o character. The
default shell can be changed at any time throughout the user session, including immediately after
the login sequence, by typing the following command:

% chsh /bin/sh

The Bourne Shell is thereafter the one that will be used at the next login.
To change back to the C Shell, type the following command:

$ chsh lbin/csh

At any point, the shell actually in use can be changed. From the C Shell, type:

0/0 Sh

to change to the Bourne Shell. To change back, type:

$ csh

The prompt symbol used by either of the shells can be changed during a session by way of the ‘set
prompt’ command within the C Shell or the ‘PSI’ command within the Bourne Shell:

”/o set prompt = '@'

or

3 P81 = ’@'
Because the above commands use a string declaration to set the new prompt symbol, whole words
can be used, for example:

°/o set prompt = ’hello world’

would set the shell prompt to the words ‘hello world’. Please note that the literal string that will be
used as a prompt symbol should be enclosed within “ closed quotes” symbols.

6.5. Using the Shell.

When the user types a command into the system, it is stored in a command line buffer until the
carriage return character is detected. The command line is then interpreted by the shell for subse-
quent utility or kernel action.
Each command is a sequence of words separated by spaces or special characters. The first word
specifies the command to be executed. Any remaining components, with a few exceptions, are
passed as “arguments” to that command.
If the first element of the command names an executable file and refers to a compiled program or
shell script, the shell creates a process that executes the command. An executable file is one
indicated by an appropriate set of access codes. For further details of access permission codes, see
Chapter 10.
If the file is marked as being executable but is not a compiled program it is assumed to be shell
script, a file of ordinary text containing command lines. In this case, a new shell process is created
which reads the file and executes the commands it contains.
The shell normally searches for simple commands (commands without a slash “I” prefix) in a series
of directories in succession, and then runs the first one it finds (if any). This series of directories is

6.4 WCW

GENIX -— An Overview

known as the user’s “search path”. The user may change the shell path variable to include extra
directories, exclude directories or change the order of searching.
For example, the C shell command

% set path = (. /usr/pg/john/bln /bin /usr/bin)

or the Bourne shell command

$ PATH = ".:/usr/pg/john/bin:/bin2/usr/bin"

Lt 37will cause the shell to search the current directory . , the subdirectory “bin” of the users login
directory and the two “system” directories /bin and /usr/bin. Frequently used public commands
(such as cat, rm, ed) are kept in /bin whilst less frequently used commands live in /usr/bin, /usr/nsc
and usr/ucb.

6.6. Generation of Argument Lists.

The arguments to commands are very often filenames. Sometimes these filenames have similar,
but not identical names.
To take advantage of this similarity in names, the shell allows users to specify patterns that match
the filenames in a directory. If a pattern is matched by one or more filenames in a directory, then
those filenames are automatically generated by the shell as arguments to the command.
Most characters in such a pattern are employed at face value, but there are special “metacharac-
ters” that may be included in a pattern. These special characters are the asterisk (*) which matches
any string of variable length (including an empty string), the question mark (7) which matches any
one character, and any sequence of characters enclosed within square brackets ([and l) which
matches any of the enclosed characters.
Inside square brackets a pair of characters separated by a dash (—) matches any character lexically
within the range of that pair. Thus “[p—xy]” is equivalent to “[pqrxy]” as well as “[psuxy]”.
Examples:

* matches all names in the current directory
temp matches all names containing “temp”
[a—f]* matches all names beginning with “a”,

“b”, “c”, “d”, “e” or “f”
*.c matches all names ending in “.c”
/usr/bin/? matches all single—character names in the

/usr/bin directory

This pattern matching facility makes it possible to organise information in large collections of small
files that are named in a disciplined way.

6.7. Command Groupings.

Various items of punctuation are used by the shell to separate commands or group them together.
Some of these are keywords like “if”, “then”, “else” and “while” are employed when the shell is
being used as a programming language. For a discussion of the shell as a programming language the
reader is referred to specialised UNIX text books and to the GENIX Programmer’s Manual.
Multiple commands can be grouped on the same line provided they are separated by semi-colons
(;). The shell does not prompt for another command until it has executed all of the commands
grouped by semi-colons. It is, however, possible to ask the shell to start a program but not wait for
its completion before accepting another command. This is achieved by running the program as a
“background job”, indicated by ending the command with an ampersand (&). To execute a
sequence of commands in the background they must be grouped together by parentheses.
In the following example only the ‘echo ready’ command will be run as a background job after the
first two commands have been completed:

% date; ls; echo ready&

WCW 6.5

GENIX —— An Overview

The following command causes the shell to run all three commands as background jobs:
% (date; ls; echo ready)&

As soon as this command is input, the shell prompt will be displayed, as the three jobs are com-
pleted in the background.

6.8. Input/Output.
Many GENIX programs are designed to take characters from a standard input channel, for exam-
ple, the keyboard, transform them in some manner and write the results to a standard output
channel such as the screen. This kind of program is called a filter.
The ‘sort’ utility, for example, takes a file of text lines from its input, sorts the lines to alphabetical
order and writes them to its output. By default, standard output is the screen and standard input is
the keyboard. The user can type in lines and see them sorted immediately. More typically the sort
utility would be applied to the contents of files.
Suppose ‘keywords’ is a file containing an unordered list of words selected from this manual to
provide the index. The command

% sort <keywords

instructs GENIX to ensure that the sort program receives its input from the keywords file, sorts its
contents and displays the ordered list on the screen. The ‘<’ character, known as a ‘redirection
operator’ is read as ‘from’ or ‘source’.
The command sequence

% sort <keywords >index

would cause the ordered keyword list to be stored in a file called index and the results would not be
displayed. Read the ‘>’ as ‘to’ or ‘target’. The important point about redirection operators is that
they are interpreted by the shell not the program. They work with any filter and will connect it to
any files or devices on the system.
Therefore

% sort < keywords > /dev/Ip

causes the immediate output of the sorted contents of the keywords file on the line printer, which
as far as the shell, and most of GENIX is concerned, is a file in the /dev directory of devices.
Typically, output would not be sent directly to a line printer but rather to an intermediate print
spooler, known to GENIX as lpr. The correct way to do this is:

% sort <keyword llpr

This tells the shell that output from the sort operation is to be connected to the input of the lpr
program. The vertical line is pronounced ‘pipe’.
A pipe is a form of redirection in which two or more programs are run together with the output
from one being passed as input to the next.
The main advantage of the pipe is that it provides a concise notation for the sort of task that would
require the explicit use of temporary files on many other operating systems. None of these inter—
mediate files are required in the course of pipe operations.
The following example uses the document preparation programs described in Volume I of the
GENIX Programmer’s Manual:

% refer myfile >tempfiIe—t
% tbl <tempfite-1 >tempfiIe—2
% neqn <tempfiIe-2 >tempfile—3
% nroff —ms <tempfile—3 >tempfile-4
% lpr <tempfile-4

6.6 WCW

GENIX — An Overview

This uses four temporary files which are left in the current directory at the end of the task and is
much less compact than its pipeline equivalent.

% refer myfile |tbl Ineqn lnroff ~ms |Ipr

The result is the same, namely the formatting and printing of a text file while leaving no intermedi-
ate files.

Pipelines make it possible to build powerful data-manipulation commands by connecting a series of
filters. Moreover, these commands can be incorporated into a “shell script” (a file containing a
sequence of shell commands) and invoked as, and when, required.

6.9. Programming the Shell.

The shell is not merely an interactive command language. It is also a programming language in
which new commands can be written in terms of existing GENIX commands. Anything which is
valid when using the shell interactively from a terminal can be incorporated in a script and usually
vice versa.
GENIX supports a very powerful set of tools for use individually or within shell scripts, which are
described below. When harnessed together by the shell’s control language, these tools can perform
major application tasks with the minimum of programming effort. A classic example is the pipeline

”/0 Is [grep file [we —l

which prints the number of file names in the current directory containing the string ‘file’.

6.9. 1. Shell Scripts.

A key feature of shell programming is the shell script, which is an executable file containing a
number of other commands.
By way of an example, suppose that hardcopy of various mailing lists are required periodically. For
example, to set up a script called ‘mailpr’ the following command can be stored in a file created
under ed.

sort <$1 |Ipr

The script file is granted execution permission with the chmod or ‘change mode’ command, and is
thereafter processed by the shell, utilities and kernel as though it were a utility or system file itself.

6.9.2. Positional Parameters.

This example uses ‘positional parameters’ which allow a script to act in a generalised fashion. They
are used to specify the position of more specific data to be entered later. These actual data are
entered in the form of arguments to the command that executes the script.
Typing

% mailpr addlistt

will cause the shell to execute the mailpr script, using the addresses contained in addlistl, by
substitting addlistl for $1. If the script had contained $2 or $3 the shell would have substituted any
second or third word given to the command. Upto nine positional parameters ($1 to $9) may be
used in this way.

6.9.3. Control Flow.

Like high level languages such as Pascal and FORTRAN, the shell programming language includes
logical structures for control flow. The structures available are:

if...else
while
foreach or for
case or switch

WCW 6.7

GENIX — An Overview

For example a script called ‘tel’ containing:

for i
do grep $i /usr/lib/telnos; done

can be activated by the command:

% tel hello

to list all the lines containing instances of the word ‘hello’.
The existence of these constructions, and the editable nature of existing command files means that
new command systems can be developed by piecing together and amending existing shell programs.

6. 10. Process Control.

Any operation currently in action is a “process”. The normal sequence of processes follows the
order of command input, whether from an input device or a shell script, but the MG-l’s process
control systems allow more complex arrangements.
Background processes (commands ending in ‘&’) execute while other processes are directly con-
trolled by the user. While freeing system resources for other activities, background processes have
the disadvantage of reducing user control, especially when they have to be terminated prematurely.
To halt a normal process, the <Delete> key or the <Ctrl> <\> sequence is used. However, some
processes such as those operating in “raw” mode (such as screen editors) cannot be interrupted in
this way. Instead, they require the use of the ‘kill’ signal which terminates processes ‘with extreme
prejudice’. Successive depressions of the <Ctrl> <Alt> <Esc> combination sends progressively
stronger kill signals: SIGINT, SIGQUIT, and SIGKILL. In most situations, the SIGINT signal
will be sufficient to halt a process. For the handling of runaway processes, see section 11.5.
Using SIGKILL frequently resets the system back to the login prompt, and should be used with
caution, as all current processes will be halted.

6.11. Graphics Facilities.

GENIX incorporates tools specifically designed for the high resolution graphics capability of the
MG-l. The window manager, for example, provides a set of commands for displaying multiple
windows. The screen can be divided into several, perhaps overlapping, areas. Commands are
available to change the size and position of windows and their order of overlap. Areas within
windows can be ‘sensitised’ to receive input commands from a pointing device such as the mouse.
GENIX also includes a range of graphics library routines designed to simplify the task of producing
application packages. Because the kernel is the basis of graphics support on the MG-l , and because
the operating system allows the addition of new commands and utilities, the graphics systems can
be radically updated.

6.12. The On-line Documentation and Learning Aids.
GENIX offers a number of on—line aids in addition to the printed Programmer’s Manual. The level
of provision is determined by the hard disk configuration because the complete manual requires 1.4
Mbytes of disk space.
The on—line version of the GENIX Programmer’s Manual is accessed with the ‘man’ command. A
number of arguments may be added, for example a subject heading:

% man date

produces a copy of the manual section on ‘date’. The full range of options avilable to this command
is given in section 1 of Volume I of the GENIX Programmer’s Manual, or may be displayed by
typing:

% man man

A further facility is ‘apropos’ which lists the manual sections containing instances of any of the
keywords in the command title. Embedded instances of keywords are detected. For example refer-
ences to “compiler” will be listed searching for “compile”. The case of characters is ignored.

6.8 WCW

Chapter 7
A GENIX Session

7.1. Introduction.

This chapter is intended to introduce some of the most commonly used GENIX commands. It
draws on the information laid out in Chapter 6, and relates it to the development of a typical
application, in this case, a series of text documents and programs.
The author of this document intends to create a number of files, each containing a separate chapter
of the document. This set of files will be held under its own directory entry. In addition, a series of
memos to colleagues, an appointments diary, and a series of example programs will be created.
Each of these will have its own directory entry, and may contain a number of files.

7.2. Login.

After powering up, the MG-l displays the login message and prompt. The user types in a user
name, hereafter given as “john”, followed by a carriage return.
It is at this point that the first of the MG~1’s security systems may be encountered. When appropri-
ate, the password prompt will appear. Full details of the password system are given in Chapter 10.
If this prompt should appear, the user types in the password, and presses <RETURN>.
In either case, the last login date is displayed, followed by the shell prompt. The default
configuration is the C Shell, which uses the % symbol as its prompt. At this point, the user may
decide to change to the Bourne Shell, which uses the $ symbol. Details of the chsh command are
given in section 6.4, but this example assumes that the C Shell is in use throughout.
From the login point onwards, only a portion of the screen is active. The Window Manager docu-
mentation that accompanies this Guide gives full details of the routines needed to activate the
window systems available. As windows are created and manoeuvred around the screen, more of the
screen area will be used.
User commands are executed from the command line buffer only after the <RETURN> key is
pressed.

7.3. A GENIX Session.

The following diagram represents the directory structure that will be created, including the home
directory.

(root)

etc bin lib dev tmp users

john

Figure 7.1. The User’s Home Directory.
For a description of the system directories, refer to Chapter 6, Figure 6.2.
John intends to create and work on the file/directory structure illustrated in Figure 6.2.
It should be remembered that all commands are terminated with the <RETURN> key. The
<RETURN> key is located on the right hand side of the alphanumeric section of the MG-l

WCW 7.1

A GENIX Session

l
users

I
john

progs diary document 1 document 2 memo

chapt 1 chapt 2 chapt 3 review schedule

Figure 7.2. The User’s Directory.
keyboard, labelled with a clockwise arrow.
The appropriate use of the <RETURN> Key is hereafter assumed, and not explicitly mentioned
when describing the use of shell or utility commands.
It is inevitable that typing errors will occur. Character deletion is achieved by pressing the back-
space key (located above the <RETURN> key and labelled with a left arrow); word deletion is
achieved by holding down the <Ctrl><w> keys; deletion of a whole command line is obtained
using <Ctrl><x>.
Filenames can include as many as fourteen characters. It is advisable to restrict the choice to upper
and lower case alphanumeric characters and avoid all punctuation marks except the full stop (.).
GENIX distinguishes between upper and lower case characters within filenames. Accordingly,
‘Chaptl’ and ‘chaptl’ are not the same file.
Files with different pathnames are different files. This means that ‘/users/john/file1’ is not the same
file as ‘/users/mary/file1’ even though, from their respective home directories both users could
simply refer to a file called “filel”.
The full pathname of a file is required if the file to be accessed is not held in, or about to be created
in, the user’s current working directory. However, it is usually more convenient to be in the
directory to be worked on, than to work from some other directory.
Many of the commands available from the shells have a range of possible arguments. In many
cases, these complement each other, and are therefore to be combined. The full syntax of such
commands is listed under the appropriate sections of the GENIX Programmer’s Manual, but a
common form is as follows:

% cat ~nb

For an explanation of this particular command, see section 7.3.5, below.
When the arguments are filenames, each entry should be separated by a space.
However, when a command uses the same filename as consequtive arguments, the ‘.’ abbreviation
may be used. The command

% cp /flp/myprog.c .

has the effect of duplicating the last-used filename and producing the same effect as
% cp /flp/myprog.c myprogc

See section 8.18 for an explanation of this particular command.
Note that all commands that involve files and directories, for example deletion, reading, copying,
appending, and moving, are subject to the user having appropriate access permission. See Chapter
9 for further details.

Commonly used sequences of commands can be produced automatically by reprogramming MG-l
keys. This procedure is described in section 5.8.4.

7.2 WCW

A GENIX Session

7.3.1. Determining directory position: pwd

A user’s position within the file structure can be determined with the ‘print working directory’
command typed against the shell prompt :

% pwd

The system response to this command will display the pathname of the current directory, for
example:

lusers/john/memos
% .

This indicates that John’s current working directory is called ‘memos’. Note that the shell has
completed the operation by returning to the prompt.

7.3.2. Creating a directory: mkdir

The mkdir command creates a directory (but not files) made up of the names used as arguments to
the command. It should be remembered that a directory is simply a home for files or other direc-
tories, and is not a program or block of text, for example.
These entries are appended to the bottom of the branch currently ‘occupied’ by the user. For
example, if the user is situated in the home directory, a command taking the form:

°/o mkdir progs diary documenti document? memos

will create these directory entries, as shown on level 4 of Figure 7.2.

7.3.3. Creating a file: cat >

The ‘cat’ command is an abbreviation of “catenate”, and stores any typed input in a named file,
here called ‘monday’. If the file does not already exist, it is created by the cat routine. If it does
already exist, existing text is overwritten. Accordingly, care should be taken that useful text is not
lost. When text is being entered under cat >, the shell prompt is suspended. In order to signal the
end of the text, and to return to shell control, type in the <Ctrl><d> sequence which generates
the code for ‘End of File’. The system responds by displaying the shell prompt.
To create a memo or diary entry, John should move to the appropriate directory with the ‘cd’
command, and type the following:

% cat > schedule
Remember: dentist at 15.30 today
<Ctrl><d>

7.3.4. Appending to a file: cat >>

To append to the end of an existing file, for example, ‘schedule’ use the cat >> command:

% cat >> schedule
Take the rest of the day off
<Ctrl><d>

The shell prompt is again suspended until data input is complete, and <Ctrl><d> is entered.
Combinations of files can be created by catenating files with these commands:

% cat file1 file2 >> fi|e3

has the effect of catenating two files and appending them in sequence to the end of file3.

7.3.5. Viewing the contents of a file: cat

The cat command as used without any directional indicators (‘>’ or ‘>>’) displays the contents of
a named file. This command operates by not supplying a specific destination; the shell supplies the
default logical destination, which is the screen.

WCW 7.3

A GENIX Session

A number of arguments to the command, in addition to file names, are available. For example: .

% cat —n schedule

causes the output lines of the file ‘monday’ to be numbered sequentially from 1. The —b argument
causes numbering to exclude blank lines. A full list of cat command options is available in the
GENIX Programmer’s Manual.
In the example, the following sequence would occur:

% cat schedule
Remember: dentist at 15.30 today
Take the rest of the day off
%

7.3.6. Viewing the contents of a file: more

Another way of examining the contents of a file is the more command:

"/0 more review

By typing this command, the file is displayed one screen page at a time. At the bottom of each .
screenful of text, the legend “---More---”, followed by a field that displays a percentage is '/
displayed. The percentage field shows how much of the total file has been displayed. Scrolling is
suspended, and the next page is viewed by pressing the <space bar>.

7.3.7. Changing directory position: cd

Users can alter the current working directory by means of the change directory command, cd, plus
a directory pathname as argument.

*Issued without arguments, the cd command returns the user to the home directory.
Two abbreviations are available for use within pathname declarations. One dot ‘.’ always refers to

t athe current directory; two dots .. always refers to the directory immediately above the current
directory. These abbreviations are integrated into pathnames in exactly the same way as normal file
or directory names.
The following command is used in order to move from the current working directory
(/users/john/memos) to the documentl directory (/users/john/documentl):

% Cd /users/john/document1

01'

°/o Cd ../john/docUment1 .

Note the use of the abbreviation feature. In this particular example, it would be permissable to
simplify the command to:

% Cd documentl

because the new position is only one level below the current position.

7.3.8. Using the line editor: ed

This line editor is a complex and comprehensive text handling system which includes a full range of
searching, substitution, deletion, insertion, block alteration, metacharacter and “wild card” facili-
ties. Accordingly, the following is a brief survey only, and is not intended to be exhaustive. Full
details are given in the commands section of Volume I of the GENIX Programmer’s Manual, and
in the Text handling section of Volume II.
To invoke the line—oriented editor, type:

% ed

7.4 WCW

A GENIX Session

While ed is active, the shell prompt is suspended, and although nothing appears to be happening on
the screen, the editor is waiting for a command.
The commands required to create a simple text file are as follows:

% ed *To invoke the editor
a *The “append data” command
Remember: dentist at 15.30 today*The input text

*The “end of text” marker
w Chapt1 *The “write filename” command
33 *Characters in the input data
q k *The “quit ed” command

. % *The shell prompt

The number of characters in the input data is a variable returned by ed after writing the text to the
specified file, and includes spaces and carriage return characters.
The append command is also used to input additional data to an existing file. Where an existing file
is concerned, the filename specifier is displaced to the beginning of the command sequence:

. % ed chapt1
a
Take the rest of the day off

w
30
q
%

Although the shell prompt is disabled while editing a text file within ed, shell commands may be
used by preceding each command by the ‘l’ (shriek) character. For example,

lpwd

would return the current work directory location. Although this information is displayed on the
screen, it is not included when the input text is written to the specified file by the editor.

7.3.9. Directory listings: Is

The ls command lists the titles of files contained in a directory in alphabetical order, for example:
% ls /users/john/memos

. review
schedule
°/o

Full details are given in the GENIX Programmer’s Manual. However, certain of the arguments to
is are so frequently used that they should be mentioned here.
The -—a argument lists all the files, including those prefixed with and ‘..’, which are normally
omitted from the listing. The —1 option provides a ‘long’ listing which includes file length in bytes,
the owner, and the time of last update. —t sorts by time of last update, and —r reverses the order of
any sorting procedure.
To ascertain the existence of a particular file, supply the filename as an argument. The system
reports either the filename, if found, or the message “(filename) not found”.

7.3.10. Moving a file between directories: mv

The mv command moves a file from the current working directory to some other directory specified
as an argument to the command. This procedure removes the file from the current directory. The
command:

. °/o mv chapt2 /users/john/document2

WCW 7.5

A GENIX Session

moves the file chapt2 from the current directory to the document2 directory.

7.3.11. Renaming a file: mv

The mv command is also used to rename a file. In this event, the two filename arguments to the
command specify files within the same directory.

% mv schedule newschedule

renames ‘schedule’ as ‘newschedule’.

It is important to ensure that new filename is not the name of an existing file. An existing file with
the same pathname will be overwritten.

7.3.12. Copying a file: cp

Copying a file to another directory with the cp command leaves the file in its original directory as
well as creating a copy. The command

losers/john/documentt/chapt3 /users/john/dooument2

typed against the system prompt creates a copy of chapt3 in the document2 directory. This opera-
tion can be carried out irrespective of the user’s current work directory.

% cp chapt3 document2

performs the same task when the user’s current directory is documentl.
Remember to update both copies of a file: making changes to one file does not automatically
change the other.

7.3.13. Removing a file: rm

The rm command removes or deletes files whose names are supplied as arguments, from the file
structure.
It is advisable to use the rm command with caution in order to avoid the accidental loss of valuable
information. Check the file contents first.

% rm newschedule

deletes the file from the current directory. To delete files held in directories other than the current
work directory, specify the pathname of the file. For example, from the documentl directory, type:

% rm john/memos/newschedule

A full range of options is available; for details, see section 1 of Volume I of the GENIX
Programmer’s Manual.

7.3.14. Removing a directory: rmdir

Removing a directory involves two steps: deleting all the files in the directory and then deleting the
directory itself.
Prior to removing a directory, use the Is command to list the files to be deleted. Make sure that the
files to be deleted do not contain information that should be retained.
To remove all the files in the current working directory type:

%rm*

Use the cd command to move to some other directory, for example:

% Cd ..

which has the effect of moving up the tree structure by one level, and type:

% rmdir

7.6 WCW

A GENIX Session

followed by the directory name. For example:

% cd john/documentZ
% rm *
% cd ..
% rmdir dooument2

When attempting to use the rmdir command to remove a directory, the system may reply that the
directory still contains files even though the rm * command has been used and ls does not indicate
any further files. This message usually means that there are files beginning with ‘.’ such as .profile,
left in the directory.
The ls command in its simple form does not list ‘.’ and ‘..’ files, and they cannot be accessed by the
wild card (*) metacharacter. To obtain a listing of all ‘dot~prefixed’ system files use ‘15 —a’. Stan-
dard and system files will be listed.

s)System files prefixed by .. may not be deleted so their removal is not neccessary in order to
remove a directory. To delete all the ‘.’ files use:

°/o rm .*

Remember that the deletion of a directory and its component files depends on the user having the
appropriate access permissions. See Chapter 9 for details.

7.3.15. Creating a Shell Script.

A script is an executable file containing a sequence of instructions. In this example, the user
requires a procedure that will feed the contents of a series of text files from a specified directory
into the GENIX spelling checker. The output from the spelling checker (unrecognised words) must
be piped into the ‘pr’ print layout facility to create a three column format which is in turn directed
to a series of new files within the existing directory. It is envisaged that these processed files will be
used for proof~reading, perhaps by analysing the most commonly misspelt words, and running a
global ‘search and replace’ operation.
This routine can be held in a single executable file, which, in this example, will be called
“spellcheck”, stored in a directory called “scripts”. Once completed, this file may be executed as a
background job to automatically check and format a text file while another is being edited by the
writer.
The sequence required to establish such a shell script is as follows:

% Cd *To return to the home directory
% mkdir scripts *To create the directory
% Cd scripts *To enter the new directory
”/0 ed *To access the line editor
a *The “append” command
Cd $1; spell —b Chapt$2] pr ~t3 > Checkchapt$2 *The script command sequence

*The “end of text” marker
w Spellcheck *The “write file” command
48 *Character count system response

*To quit the line editor
% chmod x spellcheck *To assign access permissions to

the script file and to make the file
executable. For further, details,
see section 10.8

For a full list of the options available to the commands used here, see the GENIX Programmer’s
Manual.

WCW 7.7

A GENIX Session

7.3.15.1. The Use of Positional Parameters.

In the above command sequence, a shell script has been created that will act in a generalised
fashion upon any file beginning with ‘chapt’, held in any directory, and will modify its contents to
produce a new file whose name begins with the string ‘checkchapt’.
The first and second parameters respectively specify the data to be entered into $1 and $2. Duplica-
tion of such items is permissible, as the example shows: the double use of parameter $2 ensures
that the files containing the initial and the processed text have the same identifiers.

7.3.15.2. Executing a Shell Script.

Shell scripts may be invoked in a number of ways, for example by specifying the script as an input
file to the shell by means of:

% sh spellcheck

OI‘I

°/o sh < spellcheck

In the third case the user must have execute permission for the file. Execute permission is set by the
chmod command as used in the example:

% chmod x sheilscript

Once the execute permission has been assigned, the command to invoke the script is simply:

% shellscript

Where the script contains positional parameters, their contents should be specified as arguments to
the invoking command:

% shellscript dooumentt 3

On completion, spellcheck will have created a new file, called ‘checkchaptn’ (where ‘n’ is the
chapter number) in the specified directory. In the example given above, the script inputs
documentl/chapt3 and produces documentl/checkchapt3. The new file will contain a 3 column list
of all the words in the specified chapter which are unrecognised.
In order to execute this script as a background job while perhaps editing a further text file, type:

°/o shellscript documentt 3&

The shell prompt is repeated and the editor, for example, may be used as normal.

7.3.16. Compiling and running programs.

The MG-l’s operating environment is capable of supporting a wide range of programming
languages such as C, FORTRAN and Pascal. Software systems may comprise interlocked modules
of different languages.
C is a general purpose programming language, and is the source language for much of GENIX
itself. Because it is technically a relatively low level language, C deals with the same level of data
objects as the MG—l itself, that is characters, numbers, and addresses. C itself supplies no I/O
handling facilities such as READ or WRITE statements, or composite data object handling rou-
tines for strings, sets, lists or arrays. Many of these facilities are provided by the standardised
function library supplied with the compiler.
However, the efficiency of C in low level data handling means that there is little need for the
addition of Assembler routines to C systems.
The C compiler is central to the GENIX operating system, and is invoked by the command:

% cc

which has many options. By default, the executable file produced by cc is called a.out.

7.8 WCW

A GENIX Session

To compile and run a C program (called for example ex1.c) held in the current working directory
(for example john/progs), the appropriate commands are:

% cc ex1.c
% a.out

The option —0 allows the user to specify a particular filename rather than relying on the “abut”
default. The command takes the form:

% cc ~o assignedname tilename

For example, to compile and run a program to be called ‘examplel’, type the commands:

°/o cc —0 examplel excl .c
% examplel

A program can be composed of several files which are compiled together by specifying each
filename as an argument to the —0 option:

% cc —0 newprog exlc ex2.c ex3.c
ex1.c:
ex2.c:
ex3.c:
%

and executed by typing its name:

”/0 newprog

The program that is executed consists of the three sub-programs that were compiled together.
A full range of documentation accompanies each of the optional MG-1 compilers, such as Pascal
and FORTRAN 77.

7.3.17. Sending messages: mail

The ‘mail’ facility allows any user to send messages to any other user whose user~name is known.
For example, to send a message to user “sue”, type:

% mall sue
Congratulations on excellent job

During editing, the shell prompt is suspended until the <Ctrl><d> sequence is used to signal ‘End
of File’.
Typing the mail command without an argument accesses any messages that may have been sent to
your account by other users.

7.3.18. Log Out.

To log off from the system, type:

% logout

To switch off the system, type:

% off

In order to combine the two commands, separate them with a semicolon:

°/o logout;off

WCW 7.9

Chapter 8
Interactive Graphics

8.1. Introduction.

8.1.]. Uses of Interactive Graphics.

Two broad groups of computer graphics systems are distinguishable: systems used for information
display such as bar charts, graphs and text processing; and systems used to illustrate artwork,
modelling or physical objects and processes. Computer—aided design (CAD), engineering (CAE),
and manufacture (CAM) all rely heavily on graphics systems. Integrated circuit design, molecular
modelling and flight simulation are other major uses. The techniques used to create such applica-
tions are described in section 8.3.
The MG~1 32—bit supermini graphics system provides the high-resolution graphics capabilities
needed to handle such applications. The Virtual Memory based raster scan system provides a full
16 Mbytes of storage for each graphics program, and does away with the need for the high cost
vector generation techniques used by the more traditional systems. The graphics library uses the
raster system to handle graphics objects while in turn acting as the basis of high level graphics
packages. The Window Manager allows the control of a number of concurrently active virtual
terminals.

8.1.2. Raster Scan v Random Scan.

Both styles of graphics system involve building an image from the basic picture component, the
“pixel”. Each pixel must be assigned an intensity value; those set to ‘1’ are switched on, and appear
black on the screen: those set to ‘0’ are off and remain a part of the background. The MG—l’s raster
scan system of graphics handling stores pixel intensity values in a two—dimensional array in
memory. These arrays of information in memory are called “rasters”.
The pixels to be switched on or left off are identified by the functions provided in the MG-l’s
graphics library. Each time a pixel is processed, the pixel setting function is called to assign the
appropriate intensity value. The library provides the means for creating rasters containing any
picture element that might be required. By creating, manipulating and combining the rasters
created in this way, whole pictures can be built up. The final picture may contain any mixture of
points, lines, polygons, solid areas and text characters.
In contrast, the random scan system uses a set of graphics drawing functions to calculate the
intensity value of each pixel, and stores them in a sequential file. They are then displayed in that
order, one at a time.

8.1.3. The MG-l’s Graphics Capabilities.

8.1.3.1. The Screen.

The display system consists of the memory required to contain the image in raster form, a variety
of logic devices, and the hardware required to generate the image. Electrons generated by a
cathode ray tube are fired onto the inner surface of the screen. Focusing coils determine the precise
point of the beam on the screen, and the intensity of the beam determines whether the pixel is on
or off.~The intensity values assigned by the drawing functions are used to control the beam inten-
sity.

Because the light produced by the phosphor fades at a known rate, the image must be refreshed in
a regular cycle. The MG-l’s refresh cycle is repeated 57 times each second. This is fast enough to
prevent flicker, and to allow the phosphor to display considerable detail without image smudging.

WCW 8.1

Interactive Graphics

8.1.3.2. The Cursor.

An interactive graphics system involves an image produced as output, and a variety of user
responses channelled into a program by way of the mouse or keyboard. Both input systems require
some form of cursor to track input events. The MG-l stores a number of cursor rasters in a
separate part of the memory. They may take a variety of forms, but are all contained in a 64X64
pixel raster. The Panellist (for more details see section 8.5.1.1) ensures that this size requirement
is fulfilled by truncating or white-padding. The MG—l’s cursor system is hardware based as it uses
an I/O processor (see section 3.2.1.6) to mix in the appropriate cursor image by way of XOR or OR
logic.

8. 1.3.3. Rasterops.

A raster has been introduced as a two—dimensional array of pixels that completely defines a com-
ponent part of a picture. For example, a screenful of playing cards may be defined by a series of
raster representations such that the bare body of a card is stored in one raster, and a diamond-
shaped pip in another. These two rasters can be combined to produce the image of a card with
between one and nine pips (or more if necessary). The digits would be stored as a text font held as
a separate file of rasters. A full set of logical operations are available that will produce any required
image consisting of a combination of these rasters. Because each raster has an identifier, a graphics
program can easily call up the appropriate combination.
A raster system requires two components, a representation system for the naming and creation of
tasters, and an operation system for their modification and combination. Raster creation is han-
dled by the MG-l’s graphics library which specifies routines for the creation of lines, arcs, circles,
points and text characters. Each of these is described in section 8.2.
Raster combination and handling is controlled by way of the MG-l’s set of sixteen boolean opera—
tions between two rasters. In general, two rasters, called “source” and “destination” are involved
in a rasterop. Both are used as inputs to the function, and the output is placed in destination.
A rasterop is defined as

RasterOp(Op, Source, SPos, SSize, Dest, DPos, DSize)

where Op is a value between 0 and 15, selecting one of the sixteen logical operations that may be
performed between the source and destination rasters. The other six arguments define the identity
, size and position of the two rasters, here called Source and Dest. The sixteen operations are as
follows:

0 F_O clears to 0 (white)
1 F_NOR not (source or dest)
2 F_NDS (not dest) and source
3 F_NOTD not dest
4 F_DNS dest and (not source)
5 F_NOTS not source
6 F_XOR source xor dest
7 F_NAND not (source and dest)
8 F_AND source and dest
9 F_NXOR not (source xor dest)
10 F_S source
11 FfiNDORS (not dest) or source
12 F_D dest
13 F_NSORD (not dest) or source
14 F_OR source or dest
15 F_1 clears to 1 (black)

There is a further raster handling operation available. The BatchRasterOp function uses a list of
source rasters to perform a series of rasterops between each source and the named destination. The
source rasters are listed in the null—terminated argument SList. The batch function takes the form:

8.2 WCW

Interactive Graphics

BatchRasterOp (Op, SList, Dest, DPos, DSize)
Op is again one of the sixteen logical operations listed above.
A common need is the dynamic creation of rasters. This may be achieved using the following:

NewRaster (w, h)
where the two arguments specify the height and width of the raster. When the creation process is
complete, all pixels will be set to white.
Sub-images of existing rasters can be created using

SubRaster (Parent, x, y, w, h)
where the Parent argument identifies the existing raster, and the other arguments specify the origin
(in parent coordinates), and size of the sub—raster.
Rasters created with these processes can be destroyed using

FreeRaster (Raster)
This function should not be used on a sub-raster whose origin coincides with the origin of the
parent.

8.1.4. Methods and Techniques.

8.1.4.1. Plotting and Coordinate Systems.

Points are displayed on the screen according to the physically addressable locations available.
Because the MG-l’s screen measures 1024X800 pixels, there are 819,200 discrete locations. This is
the “resolution” of the screen.
The resolution of the screen is a physical parameter of the system. The “precision” of the system
is a logical parameter in that it determines how well the resolution is used. Precision is determined
by the number of physical pixels that can be actually accessed. If memory is too small to maintain
an adequate system precision, many of the screen locations will not be accessable, and so a high~
level resolution would be wasted. On the other hand, if the precision is much greater than the
resolution, there will be addresses held in memory that do not correspond to available pixels, and
so much of the potential image detail will be wasted. For this reason, precision and resolution are
equal
The basis of a point plotting system is the cartesian coordinate system that uniquely identifies each
discrete point on the screen. The MG-l’s display system ranges from 0 to 1023 on the x axis and 0
to 799 on the y axis, and provides the space onto which application coordinates are mapped. This
is introduced in the next section, and covered generally throughout this chapter.

8.1.4.2. Transformations.

Transformations are the general class of image—handling techniques that produce picture changes in
an orderly and controlled fashion. They depend on standard and well-understood mathematical
techniques such as trigonometry and matrix~handling. The commonest transformations are map-
ping between one coordinate system and another; rotation; translation; and scaling. All transfor-
mations may be concatenated to produce multiple operations to be performed with a single func—
tion.

One of the great advantages of transformations is the opportunity to use different coordinate
systems. This allows a number of non-standard functions to be applied to a picture within the
context of an appropriate coordinate system. The final product of these transformations is then
mapped into screen space only when the appropriate visibility guarentees have been applied. A
general discussion of coordinate mapping systems follows throughout this chapter; the section on
clipping is especially important.
Geometrical transformations allow an image to be manipulated by altering the position and scale of
its component parts. _
A detailed discussion of the various geometrical transformations appears in section 8.2.9.

WCW 8.3

Interactive Graphics

8.2. Basic Methods.

8.2. 1. Introduction.

Graphics handling systems are based on the pixel as the smallest unit of image production. To
create a picture, many hundreds or thousands of pixels must be set to an appropriate intensity
value. Lines, arcs, characters and solid areas are all made up of single points.
Composite entities of this sort are created using the MG—l’s Graphics Library. These functions are
covered in the following sections. In all cases, the function relies on a pixel setting function to
actually translate the calculated image into physical pixel intensity settings.

8.2.2. Point Plotting.

Situations requiring the modification of a single pixel within a raster may make use of the point
plotting call which takes the following form:

GPlot (Op. Brush, Paper)
where Op defines the logical operation performed, Brush defines the location, and Paper identifies
the relevent raster.
The inverse of this function is the pixel interrogation function

GPoint (Brush, Paper)
which returns the intensity value of the pixel at Brush within the raster called Paper, giving 0 if the
pixel is set to white, and 1 if set to black.

8.2.3. Line Drawing
Line drawing techniques are essential to any computer system, and are used in block diagrams, bar
charts and graphs, engineering and plans, and any number of other applications. Curves may he
produced as an approximation of short straight line segments.
Lines are created from an aggregate of points. Points are calculated from the parameters supplied
to the line drawing function

GLine (LineEnd, Op, Brush, Paper)
where Brush is the current drawing position, and LineEnd specifies the end point of the line to be
produced. A line is drawn between these two points in the raster called Paper. LineEnd then
becomes Brush, irrespective of any clipping that may take place. A series of techniques are used to
minimise the stepping effect produced when an idealised diagonal line is translated into a finite
number of discrete points on a screen. The pixel setting routine assigns an appropriate intensity
value to the pixels involved, 0 for the background and l for the line.
The success of a line drawing system is assessed in terms of the straightness of the lines produced,
the accuracy with which lines meet, whether or not the lines have a constant density, irrespective of
angle and length, and the speed at which drawing occurs.

8.2.4. Moving the Brush.

To move the position of Brush without drawing a line, use the function
GMove (LineEnd, Brush)

where LineEnd is the current position, and Brush is the desired point.

8.2.5. Curve Generation.
Arcs may be placed in a raster using the GArc function which takes the form

GArc (ArCCentre, ArcEnd, Op, Brush, Paper)
GArc operates in the same way as the GLine function, drawing from Brush to the boundary of a
rectangle whose corner is identified by ArcEnd. Drawing procedes in a clockwise direction around
the point ArcCentre. If no boundaries are encountered, the function produces a complete circle,
which is then clipped to the raster Paper.

8.4 WCW

Interactive Graphics

Full-circle generation is handled by the GCircle function:
GCircle (Op, Radius, Brush, Paper, Clip)

A circle of radius Radius is drawn around the current Brush position, and clipped to Paper if Clip
is non-zero. If Clip is not set, the drawing speed increases, but at the cost of possible segmentation
violation and overwriting of the user’s address space when the circle is drawn outside Paper.

8.2.6. Solid Area Filling.

Solid areas can be created by establishing a series of lines within a raster using the above functions.
These lines are used to set up the boundaries of the polygon. In order to in-fill this area, the
GAreaFill function is available:

GAreaFill (Brush, Paper)
The function floods the polgon outwards from the brush position until it reaches the boundaries of
the polygon. The boundaries are identified when pixels are reached that are the inverse of the tone
at the starting point. The polygon is then flooded with this inverse tone.

8.2.7. Character Generation.

The raster system’s ability to handle arbitrary patterns of pixels makes it ideal for the displaying of
characters.
The MG-l provides a series of pre-defined fonts. These are contained in the directory
/usr/lib/mfont. Also provided is a font editor which allows the user to alter the appearence of any
character by way of the mouse. For access to the font editor, type the ‘fonted’ command followed
by the name of the font to be edited, for example:

% fonted elite

A menu of the characters available within the selected font is displayed. The mouse is used to
manoeuvre the cursor over a particular character, and a mouse button clicked. The selected
character is then displayed as a raster-style diagram made up of a matrix. The character is picked
out in black squares, the background in white. To alter the appearence of the character, use the
mouse to manoeuvre the cursor onto a square and click a button. Black squares become white, and
vice versa. To save this new design, type

% save

To return to the standard design, type

% undo

To create a new font, make a copy of an existing font, and make changes to the copy using the font
editor as described above.
The main advantage of a raster-based character system is that the handling of descenders and
proportional spacing is an easy matter. These are much more complex problems on a random scan
system. Each character is stored in a raster of fixed height, but variable width. This arrangement
compensates for the letter “i” being much thinner than the “w”, and ensures that spacing is equal,
irrespective of this difference.
By allocating a raster coordinate system with positive and negative y axis values, the raster’s origin
may be aligned with a display base-line such that characters with descenders are set below those
without. This is a primary example of a convenient coordinate system being used to create an image
before it is mapped onto screen space for display.
The MGal’s graphics system includes a number of functions for displaying characters under pr0~
gram control.

GPutC (0, Op, Brush, Font, Paper)

writes the character 0 from Font onto the raster called Paper. Brush identifies the left-hand end of
the character’s baseline. Op specifies the boolean operation that will be used to combine the
character with the destination raster. After the character has been drawn, Brush will be updated to

WCW 8.5

Interactive Graphics

(x+w, y) where w is the width of the character.
The GPutString function draws strings more efficiently than repeated calls to GPutC, and takes the
form

GPutString (Paper, Brush, Op, Font, String)

String is written to Paper at Brush according to Op, using characters from Font.
Fonts are read byeither the GFontRead call or the ReadRasterFontFile call. Fonts are held in
vfont format files. Each file contains a variety of header information, an array of 256 character
descriptions, and their associated bit maps. Fonts are loaded into a format more suited to rapid
output; two formats are available.
The GFontRead function is the most commonly used, and is used with fonts held in rfont format.
Characters are defined in this form by way of a baseline, centre line, width, and height. The
ReadRasterFontFile call is based on ofont formatted files, and is used to access a font held in the
form of a single raster. Individual characters are then addressed as sub—rasters with their own
offset address within the font raster.
By selecting characters from a font set, using one of the above methods, and mixing them with
other raster pictures, annotated diagrams can be produced.
Full details of the character handling facilities can be found in the graphics(1), fprint(3), ofont(5),
rfont(5) and vfont(5) references in the GENIX Programmer’s Manual.

8.2.8. Scan Conversion.

Scan conversion is the process that translates a line or point or text character from a simple
geometrical expression into a raster representation. The drawing functions calculate the positions
of the pixels to be set on or off, and call the SetPixel function which takes the following form:

SetPixel (Raster, x, y, intensity)
where the first argument identifies the raster, and the next two identify the (x,y) coordinates of the
appropriate pixel.
The scan conversion system called by a library function is very efficient for the creation of long lines
or other pictures. However, where short lines are required, it may be more efficient to use the
SetPixel function directly.
Solid areas are an integral part of many graphics applications, such as technical illustration and
animation. Three properties of a solid area lie at the heart of its creation: its mask, its shading, and
its priority.
The mask of an object is the pattern of pixels set to on and off to create the image in raster form.
The process of determining the mask is called “solid area scan conversion”.
The shading of an object specifies how the intensity of each pixel is asssigned.
The priority of an object resolves the problem of overlapping objects; lower priority objects are
obscured by higher priority. It will be apparent that this factor is not important when overlapping
does not occur, or where Overlapping causes pixels of the same intensity value to correspond.
However, when white and black pixels coincide, the situation is resolved according to the priority
of the overall object within the image.
A simple algorithm for scan converting solid objects might take the form:

WriteRectangle (x, y, width, height, intensity)
Such algorithms relt on the fact that discrete pixels obviously have integral coordinate values: the
call

WriteRectangle (8, 5, 8, 4, intensity)
will scan the rectangle 8 <=x <=11,5 <==y <=9 with the given intensity. This particular algo—
rithm is unrealistically simple, but gives an indication of the processes involved.
More complex shapes use complicated polygon scan conversion algorithms. While a large number
of these are available, a typical method is to define a polygon in terms of its vetices. Pixels occuring
on an imaginary line scanning the polygon that has accrued an odd number of intersctions, are

8.6 WCW

Interactive Graphics

evidently within the polygon. These pixels are valued accordingly. Those on a line currently with an
even number of intersections are obviously outside the polygon, and are assigned the background
intensity value. A number of refinements to this general pattern are used to improve performance.

8.2.9. Transformations.
Many graphics applications involve part or all of the picture undergoing a change in size and
orientation. Such transformations are accomplished by way of standard mathematical techniques
such as coordinate geometry, trigonometry and matrix-handling. These transformations are then
combined with the scan conversion routine to compute the appropriate pixel values after, for
example, a scaling and a tranlation.
A transformation is a single mathematical entity, and may be represented and handled using a
single identifier. However, transformations may be concatenated in order to produce a more
complex result. It is essential to realise the importance of maintaining the order of transformations
if they are to be combined. The effect of a rotation through 90° followed by a translation in space
by Tx=~80, Ty=0 is very different to the result of the two in reversed order.
The basic transformations available are mapping from one coordinate system to another; rotation;
translation; and scaling. The first is an integral part of Window Manager and high-level operations.
Such functions as PanelUpdate are described in section 8.5.
The general form of a translation is: x’=x+Tx y’=y+Ty

where (x’,y’) are the amended coordinates, and T is the displacement along the relevent axis.
Rotations take the form: x’=x cos 6 + y sin 6 y’=—x sin 0 + y cos. 9
where 0 is clockwise angle of rotation.
Scaling transformations take the form: x’sx y’=ySy
where S is the scaling factor. For example, if Sx=Sy=2, the image is doubled in size. If Sx and Sy
are not equal, the image will be distorted. Negative Sx and Sy values produce mirror images.

8.2.10. Clipping.

Many graphics applications, especially those employing the Window Manager, require the image to
be viewed a portion at a time. This effect is noticable, for example, when the image undergoes an
upward scaling such that part of the picture grows beyond the display area’s boundaries. The
process that retains the visible area and ‘discards’ the invisible, is called clipping.
A clipping algorithm may be used to analyse an image for its visible portion. This visible portion is
then mapped onto the screen space coordinates. In very general terms, a clipping algorithm uses a
pair of inequalities to ascertain whether a point (x,y) is visible:

xleft <=x <=xright ybottom <=y <=ytop

8.3. Basic Interactive Techniques.

8.3.1. Introduction.

The designer of an interactive application makes extensive use of such interactive techniques as
pop—up menus, rubber—band lines, methods of object selection, and dynamic rotation. These tech-
niques are the ‘raw materials’ of user interface design. They have been developed over the years,
and some of them date back to the earliest days of R & D activity. For evidence of the wide variety
of techniques available, see the graphics references in Appendix F.
The applications programmer, working with a high—performance work station like the MG-l,
expects to be able to choose freely among the repertoire of commonly used techniques. However
there are certain techniques that make heavy demands on workstation resources, for example
“dragging” large areas of the screen image around with the mouse, dynamically adjusting the shape
of spline curves, or running complex animation programs. Some techniques are difficult to support
under a standard UNIX environment; this is the case for example, with most window-related
operations.

It is important to ensure that the workstation can support a reasonably wide range of interactive
techniques. Unfortunately this cannot be done through any single measure, such as increasing the

WCW 8.7

Interactive Graphics

speed of rasterops; this is because each technique has its own implications for resource require-
ments.
The only way to ensure that the workstation can support a wide range of facilities is to consider the
full range of these requirements.
The purpose of this section is to define the range of interactive techniques likely to be found in
MG-l applications. It is essentially a catalogue containing a brief description of each technique,
sufficient to allow analysis of the full scope of resource requirements. It is not intended to assist the
user interface designer and it does not make recommendations about the appropriateness of partic-
ular techniques to specific styles of user interface.
The catalogue is organised into seven sections, the first of which is of a general nature, the remain-
ing six corresponding to the principal application areas at which the MG-l is likely to be directed,
namely general control techniques; CAD and draughting; text manipulation; modelling and data
presentation; image manipulation; and animation.

8.3.2. Control Techniques.

Certain techniques apply across a range of different applications. There are two types:
(1) techniques such as object selection, which achieve a similar effect within each application, but

which operate in different ways; and
(2) techniques such as pop~up menus that can be used in a wide variety of specific applications.
The current section is concerned with techniques of the second variety. Techniques of the first type
are discussed under the appropriate headings.

8.3.2.1. Type-in Box.

The type-in box is a rectangular area of the screen used for text entry. The user may be required to
begin by placing a “caret” in the box, and then entering text and undertaking various editing
activities. Support of type—ahead (where keystrokes occur faster than echoing) is a general require—
ment.

8.3.2.2. Cut-and-paste Buffer.

This is a buffer for use in editing operations. A CUT command removes the selected text into the
buffer; a PASTE command inserts the buffer contents at the selected position.
Note that in the case of applications dealing with multiple data types, such as text-graphics editors,
the buffer must be capable of handling the full range of data types.

8.3.2.3. Icons.

Icons are miniature graphical representations of the application’s objects and services. Icons
representing objects are used as a means of on~screen filing. Icons representing services are used
for invoking commands, sometimes just like function keys, sometimes by moving an object-icon
over the service-icon.
An icon may be created in a number of ways, for instance by setting aside the contents of a window,
by creating a new document or file, or by duplicating the object represented by the icon.
Individual icons can normally be dragged around the screen. Most systems supporting icons also
provide a means of arranging icons neatly on the screen, invoked either manually or automatically.
In some cases, the system animates the rearrangement to highlight the repositioning of each icon.

8.3.2.4. Split-screen Controls.

A split-screen system allows a screen or window to be divided into two or more regions by means
of horizontal dividers. Some applications support vertical split—screen dividers. The divider may be
a simple horizontal line or may actually contain information about the region created.

Splitting is usually achieved by indicating the divider’s position and giving a SPLIT command. The
divider is removed by indicating which region is to go away and giving a DELETE command. The
user may split a window by dragging a divider symbol to the required position, and reverse the
process by dragging the divider back to its original position.

8.8 WCW

Interactive Graphics

8.3.2.5. Tiled Windows.

A tiled window scheme can be implemented by allowing several levels of splitting. In this way, a
region created by means of horizontal dividers can itself be split up with vertical dividers. Tiled
windows require the same controls as split screens.

8.3.2.6. Overlapping Windows.

Rectangular overlapping windows require four types of controls:
(1) Window movement. A particular portion of the window boundary serves as the handle for

window movement; the user points here and drags the window to its new position. During
dragging, feedback shows the window outline. Because windows can be moved partly offs-
creen, a single small handle area is inadequate and so the handle symbols should be provided
in all four corners of the window. Several systems use the title bar, although this prevents the
user from moving windows offscreen upwards.

(2) Size changing. This again requires handles. While some systems have a single handle in the
bottom right~hand corner, the standard MG—I window control system, for example, provides
size control symbols for each of the window’s four sides. Window contents should remain
fixed relative to the top left corner during size changes.

(3) Changing priority. Priority indicates which window is to be on top of the stack. Usually this
is done by pointing at a “priority handle”. Some systems require the selected window to be
highest in priority; selection automatically brings the window to the top. A few systems allow
other priority changes, for example sending a window to the bottom.

(4) Scrolling. This operation is required independently of the windowing scheme, and is dis-
cussed separately in section 8.3.2.7.

Windows require labels or icons for the handles, and also require a descriptive label for the window
contents. Some applications attach command menus to each window; see section 8.3.2.8.

8.3.2.7. Scrolling.

Scrolling is required in all applications whose data extends over a larger area than is visible on the
screen. This is often the case with text editors, spreadsheets, and circuit design.

Some applications require scrolling in only one dimension. It may then be possible to implement
scrolling more simply. However, a great many different systems have been implemented for scrol~
ling. Some make use of scrolling keys, while others use Control or Escape sequences of varying
clarity.

In general, scrolling operations need to specify the axis of movement. Accordingly, they are often
implemented via handles along the appropriate edge of the screen or window. Handles may be
provided for scrolling by a single text—line (or equivalent unit in non-text applications), by a full or
half screenful, or by a specified distance. It should be possible to invoke these functions several
times in quick succession by “click-ahead”, and have the window contents move only once
throughout the total required distance.
Feedback is required to support scrolling; it should show the window’s position relative to the
overall displayed area. This may be done by means of an “elevator”, a box that moves along the
screen edge as the contents scroll. In CAD and draughting it is common to provide two or more
views of the same drawing; see section 8.3.3.10.
A thumbing control allows the user to specify a position relative to the start and end of the
document, and the window is scrolled to show that position. This may be done by the user dragging
the elevator to the required position.

8.3.2.8. . Fixed Menus.

Command menus usually consist of items of text displayed in a horizontal row or vertical column.
Pictorial items may be used instead, where space is tight or the meaning of the pictures is obvious.
To invoke a command, the user points at the appropriate item with the mouse. Usually the mouse-
button downstroke simply generates feedback, confirming which item has been selected; the
upstroke completes the selection. This allows the user to move off the item before releasing the
button.

WCW 8.9

Interactive Graphics

Menus of this kind may be arranged along any edge of the screen, although for the benefit of
right-handers the left edge is usually avoided; also the bottom edge is sometimes preferred to the
top because it is a more natural resting place for the user’s gaze.
Menus may be fixed to the borders of windows. This provides a useful way of avoiding operand
selection; the command implicitly applies to the window contents. Window—border menus are
almost always placed at the top or bottom to reduce the amount of border width required. Scrolling
controls are required for menus if their windows are adjustable in width.
Many applications require more commands than will fit in a single menu. Commands are therefore
divided into a number of sub-menus brought up by selecting a command in the main menu. Many
systems use this niethod, thereby extending the command repertoire to many levels of hierarchy.
They use the ESC key for example, for backing up the menu tree.

8.3.2.9. Pop-up Menus.

Pop-up menus are temporary menus that are displayed when needed by the user, and later
removed. The advantages are that they avoid cluttering the screen when not in use, and that they
reduce hand movement by appearing near the mouse cursor.
The “standard” pop-up menu operates as follows. It appears, close to the cursor, when a particular
mouse button is pressed. The user slides the cursor, with the button still pressed down, to the menu
item required; feedback shows the currently selected item. The user then releases the button: the
menu disappears and the requested action is taken. Next time the menu is required, the system will
often display it with the most recently selected item under the cursor, on the assumption that this
item will be selected again.
Some pop-ups stay on the screen until they are explicitly removed by the user. This is done for
various reasons, such as allowing the user to scroll a very large menu (see below), or to allow
several different parameters to be set. It is possible with these “stay—up" menus to accumulate
several on the screen at one time.
Pop—up menus can contain a very large number of entries. To avoid obliterating large areas of the
screen the following techniques can be used:
(1) Scrolling pop—ups. This technique is often used in menu managers, where the menus are in

fact stay-ups. It is of course possible to scroll a pop-up without releasing the menu button.
(2) Overlapping pop-ups. These are displayed as a closely-packed group with a small portion of

each menu visible, perhaps just enough to show a title. As the cursor moves into the visible
part, the menu pops to top priority.

(3) 2D pop-ups. These may include items with right-pointing arrows. The user can slide off to the
right, whereupon another menu pops up, a submenu of the previous one. The user can retract
a submenu invocation by moving off to the left. This scheme allows several levels of sub-
menus.

Note that the structure of overlapping and 2D pop—ups makes them equivalent to submenu
schemes. Scrolling menus are basically one-dimensional in structure.

8.3.2.10. Pull-down Menus.

Pull-downs are effectively pop-up sub-menus applied to fixed main menus. The submenu pops up
when the user selects a main-menu item; it then behaves just like a normal pop-up; the user slides
down to an item (with feedback showing what is selected) and releases, whereupon the pull~down
“rolls back up” and disappears, and the selected action is executed. This method is very popular;
a similar method uses pull—downs within a main menu displayed along the side of the screen; to
make room for the submenu, the lower portion of the main menu slides gracefully downwards out
of the way.

8.3.2.11. Filing and Retrieval Techniques.

Under GENIX, most filing and retrieval is performed with the aid of path names. Several tech—
niques have been developed to alleviate users’ problems with path names, for instance forgetting
the path, or mis-spelling the name.

8.10 WCW

Interactive Graphics

Automatic name completion can be invoked when the user types a special key, for example,
Escape. The system attempts to complete the name from the first few characters typed.
Iconic or spatial file indexes show a directory’s contents in tabular or tree—structured form, and
allow the user to select a file by pointing. Various methods permit new files to be created, for
example, typing a name into the table, or labelling a spare branch of the tree.
It is possible to do away with file names altogether in spatial indexes, relying entirely on an
object-oriented approach using non-unique free-form text descriptions. This method may have
many side-effects, especially where it is used within a multiple-window desktop environment. It
then becomes necessary to keep track, in the file index, of the files that are currently displayed in
windows. When text descriptions are edited, the changes must appear everywhere they are
displayed; the description may be visible in more than one place at once.

8.3.2.12. Command Undo.

Applications are increasingly expected to provide UNDO facilities. These are difficult to provide in
certain cases, for example where the object of the command is ambiguous, as in many text-editing
operations; or where buffering of the previous state is difficult, as in on—screen painting.
Special Undo requirements are considered below under the headings of the relevant application
areas.

8.3.2.13. Help and Warning.

Help and warning messages may be displayed either in a reserved area of the screen, or in a
specially created window. Special windows are preferred because they can be bigger and are more
likely to be noticed by the user. The area or window must frequently include a menu of options for
the user, such as “ignore warning” or “cancel operation”. The application must take appropriate
action if the user ignores the warning altogether and starts issuing more commands.

8.3.2.14. Cursor changes.

Most systems change the cursor to reflect interpretation of mouse buttons or cursor movement.
This often happens when the mouse moves from one area of the screen to another, for example
into a menu, into editable text, or onto a window “handle”.

In some instances the cursor may disappear altogether. This may be appropriate when text is being
entered, for example, when it is necessary to avoid clutter from a superimposed cursor and caret.

8.3.3. CAD and Draughting Techniques.

This section covers techniques concerned with the creation of two—dimensional geometric drawings.
The two application areas in which these techniques are most widely used are CAD (especially
circuit design) and the preparation of diagrams. Applications of this kind treat the screen rather
like a drawing board; due to the screen’s small size, the effect is often of a screen-size aperture onto
a very large board.

Many of the techniques used in CAD and draughting have been carried over from line-drawing
graphics. Some CAD packages are designed to run on either line—drawing or raster graphics equip-
ment. The overall result is to treat the raster display like a linevdrawing display; this may, however,
create some problems in achieving an adequate level of performance.

8.3.3.1. Endpoint Placement.
Where geometric objects are being defined, the user must specify two or more endpoints. This is
usually done with a click of a mouse button at each endpoint. The program should display a small
cross or other identifying symbol; if written into the bitmap with XOR logic, symbols are easier to
remove when the object is drawn or when the user retracts an endpoint.
Endpoint constraints are usually needed to ensure that points fall on grid intersections. However
the user may wish to turn this constraint on and off.

WCW 8.11

Interactive Graphics

8.3.3.2. Object Selection.

The user needs to be able to select geometric objects in order to move, copy, delete and modify
geometry. Complete objects are selected by pointing somewhere on one of the lines making up the
object. Often, a method for selecting an individual point on the object (for example, a line end), is
required; this must not conflict with methods of selecting the whole object.
Deselection is usually achieved by selecting something else, if necessary by pointing into an empty
area of the screen.
When an object has been selected, feedback is required. This can be provided either by showing
the vertices of the object, or by flashing the object continuously off and on. It is sometimes
effective to invert all the pixels within the object’s surrounding rectangle, although this does not
work well where objects overlap extensively. Feedback should be easily removeable when the
object is deselected.
Endpoint selection should take precedence over object selection, so that when the cursor is within
a certain distance of an endpoint it should “snap” onto it rather than onto the object as a whole.
This is known as “gravity” field selection.
It is often necessary to select several objects at once: multiple selection can be supported in several
ways. A simple way is for the user to draw a “rubber-band box” around all the objects to be
selected; this area multiple selection is useable only if the objects are suitably positioned. The
concept of the rubber-band box is covered in section 8.3.3.4.
Another approach is through the use of an EXTEND key or button. The Shift key may be used for
extension; 3 shifted selection results in appending the selected object to the set of objects selected
so far. This technique can be interleaved with scrolling operations in order to select objects scat-
tered over a wide area.

8.3.3.3. Creating and Selecting Groups.

In some applications, the user can select several items and form them permanently into a group.
Any action applicable to single selected objects can then be applied to an entire group. Several
groups can themselves be formed into a group, and so on.
The user should be able to select entire groups as well as individual group members, down to the
level of specific endpoints. One way to achieve this is to use successive “up-level” commands (for
example, mouse-button clicks). Another way is to identify the scope of the command, such as
point, object, group, before trying to select.

8.3.3.4. Rubber-band Operations.

Rubber-band techniques are used extensively in draughting operations. The two main reasons are:
(1) to explain to the user what is happening, for example to show that two points are being

connected; and

(2) to provide feedback regarding the precise line or area being created, as in the case of area
multiple selection.

Rubber-band drawing can be applied to straight lines, circles and arcs, rectangular boxes, con—
strained lines (horizontal, vertical or 45°), arrows, or any other objects. The user indicates the type
of object, and presses down on a mouse button, lifting up when the object is correctly positioned.
Numerical dimensions may be shown to assist in creating an object of the desired size.
A problem arises in drawing connected sequences of lines with rubber-band feedback. The normal
technique would be to press down a mouse button to start each segment and release to finish it,
pressing down to start another. However this leaves the user, at the end of the sequence, with a
dangling rubber-band line that must be removed. Some systems avoid this problem by requiring a
down—up at each endpoint, instead of an up—down; thus the line segment itself is drawn with the
button up, which is rather unconventional. Possibly a more acceptable solution is to have the user
terminate the sequence with an extra click.
Use of the rubber-band technique is limited by the amount of computation required. Some pro
grams provide a rubber~band feedback during scaling operations, but this can be used only on
simple objects. The MG-l’s GENIX provides an in—built facility for the fast echoing of rubber-band

8.12 WCW

Interactive Graphics

lines.

8.3.3.5. Moving and Copying.

When an object has been selected it can be moved or copied to a new position. Often the two
actions, moving and copying, share the same syntax. Copying may be carried out by duplicating,
which creates a copy alongside the original; a MOVE command is then used to position the copy
correctly.
Moving an item is quite straightforward provided the distance to be moved can be specified unam-
biguously. This is the case if:
(1) the item, and its destination, are single points, as with moving an endpoint; or
(2) the new position is specified by a relative distance.
To specify the new position of a complex object, either the user must indicate a reference point on
the object, which is equivalent to (2) above, or the system must provide feedback in the form of
dragging.
When just one endpoint is to be moved, the system may provide rubber-band feedback. All lines
connecting to the point must be shown. If they were originally constrained, for example, to hor-
izontal or vertical, they must remain so.

It may be necessary, in moving an object, to align it with another object. This must override any
grid constraint currently in effect. As in endpoint placement, it should be possible to switch off the
grid and let point—proximity influence positioning.
Moving and copying via cut—and-paste is rarely found in CAD or draughting applications because it
is very difficult to apply accurately.

8,-3.3.6. Clean-up after Editing.

When two lines cross, and one is deleted, a gap may be left in the other. Some systems automati~
cally check for such effects and repair the gaps: where this is not done, a “clean-up” command is
needed. Such commands typically blank out the screen or window, and regenerate the whole
display.

8.3.3.7. Scaling.

Objects may be scaled in x, y or both simultaneously. Scaling may be applied with or without
dynamic (rubber-band) feedback. A useful case is scaling by -1, to produce mirror-imaging; this
technique is described in section 8.2.9.
Scaling is performed with respect to an origin or baseline. This may be implicit, where, for exam-
ple, the origin is assumed to be at the centre point or top-left corner of the object. The user scales
the object and then adjusts its position.
In other systems the user can specify a reference point, as in relative moves. For example, the user
can specify two points in the current selected object and the two corresponding positions they
should occupy after scaling; or a source and destination rectangle. Through rubber-band feedback,
the source and destination can be maintained in alignment to avoid introducing a rotation. It is of
course quite feasible to introduce rotation with scaling: three points in the source and three in the
destination will specify a complete six-point transformation.

8.3.3.8. Rotation.

Rotation is usually specified in terms of an axis (centre of rotation) and an angle, as is described in
section 8.2.9. Some systems permit rotation only through multiples of 90°. As with scaling, rotation
may be implemented in terms of a default axis, such as the centre of the object’s bounding rectan-
gle. The user then merely specifies the angle, and fixes up the position afterwards.
Rotation can be specified in a mode-free, down-up syntax through the provision of dynamic feed
back. The user depresses a mouse button, with the cursor at the centre of rotation, and releases at
a position in the required angular direction from the centre, relative to the appropriate positive
axis. Dynamic feedback shows the rotated object as the cursor moves.

WCW 8.13

Interactive Graphics

As mentioned in the previous section, rotation can be achieved by specifying a sixnpoint transfor-
mation. However this is an awkward method of applying pure rotation without scaling.
When entire groups are rotated, the effect is combined with any transformations previously applied
to individual objects. It may be difficult, as a result, to modify an individual transformation after
rotating a group, for example, to change the x—scaling of a box.

8.3.3.9. Curve Editing.

Curves are usually specified in terms of control points along their length. In the popular Bezier and
B-spline techniques, the control points are not on the curve itself but on a polygon that follows
roughly the same path as the curve; This polygon may be created and edited in much the same way
as ordinary straight-line sequences. After each edit, the curve is recomputed and displayed. If
sufficient computing resources are available, the curve can be recomputed dynamically as control
points are moved.
Some curve—manipulation techniques, for example, Beta—splines, have the control points on the
curve itself. The user then effectively points at the place requiring editing, and repositions the
selected point.

8.3.3.10. Multiple Simultaneous Views.

The user often wishes to see two or more views of the same information simultaneously. For
example, when working at high magnification, the user may want to see the whole drawing from
time to time. This effect is usually supported through split screens or multiple windows. The user
should be able to work in either such window.

8.3.3.11. Undoing Geometric Operations.

Geometric editing operations are usually straightforward to undo because:
(1) the inverse of any operation is itself a geometric operation. For example, scaling up undoes

scaling down, and an insert undoes a deletion;
(2) the amount of data to be retained for Undo purposes is small.

8.3.4. Text Manipulation.

Text manipulation involves a very extensive range of techniques. In terms of interaction, however,
these can be reduced to a relatively small number of generic operations: text entry; changing
character attributes; changing paragraph attributes; page layout; document traversal; and a number
of miscellaneous operations such as command reversal.
The degree of interaction varies. Most of these operations are applied single-step; the user changes
a parameter, and the system responds with a new display of the document. This kind of operation
is discussed only briefly here as the emphasis is on techniques requiring rapid response or dynamic
feedback.

8.3.4.1. Text Entry.

Text is normally entered in place; the user places a caret and types. Line breaks should appear
automatically. The system should recognise hyphens as permissible places for line breaks.
In modern systems, paragraphs are reformatted automatically as text is entered in the middle. This
is not a simple extension. For example, if a short word is entered at the beginning of a line, it may
need to be positioned at the end of the preceding line. Thus it is inadequate to reformat just from
the current line onwards.
As text is entered, the system should be capable of making changes to the current font, and should
provide commands for altering the style of specific strings of text, for example, bold and italic face,
subscripts and superscripts, underlining, and as many other effects as possible. This may be
reflected in a change to the cursor shape.

8.14 WCW

Interactive Graphics

8.3.4.2. Text Selection.
To select a caret position the user points and clicks with the mouse.
A sequence of text may be selected by drawing across it, that is by positioning at one end and
moving to the other end with the mouse button down. An alternative and sometimes easier method
is extension of the selection: after the start has been selected, the end is specified with a different
mouse button or by using a Shift key. This method was introduced in section 8.3.3.2.

The selection may also be extended up the text hierarchy, to encompass the current word, line,
paragraph, page or entire document. This is sometimes done with multiple mouse clicks.
Text selection feedback is provided through inversion, outlining or underlining. It should not be
applied to white space to the left or right of the paragraph.

8.3.4.3. Changes in Format.

Changes in format can be made at the paragraph and page level. Paragraph formatting is controlled
partly by the tab rack and partly by paragraph properties that include alignment rules and settings
for lines and paragraphs. They are changed by modifying the settings in a tab-rack display or
property sheet; the latter is typically displayed in a window. Pull—down menus may be used for
property changes.
Page layout is also usually changed with the aid of property sheets. The user may be allowed to
draw the required layout, including multiple columns, on the screen.
In some systems, feedback is provided to show the type of option displayed, such as normal or
indented paragraphs, headings, and footnotes, as in a typesetter’s stylesheet. Other methods of
feedback can be devised, and are useful where the type of entity is easily misunderstood.

8.3.4.4. Graphics Text.

The term “graphics text” refers to text labels in graphical material, such as found in illustrations,
charts, and circuit designs. Graphics text requires its own techniques for manipulation.
Single‘line items of graphics text can be entered by first specifying a position and then typing. The
position may be either the left-hand end of the text baseline, the right-hand end, or the centre; this
option is specified when the text—insert command is given. During type~in, changes in font and style
can be made as with normal text entry.

Text items, once entered, can be manipulated in various ways. Text copying and movement should
be available: it may be desirable to show block outlines during movement, rather than the full text.
Some systems also allow rotation through multiples of 90°. Arbitrary rotation is rare, and users do
not expect to be able to edit text in a rotated position.
In more complex systems, multi-line text items can be added to drawings. An enclosing box should
be defined, and a subset of normal word-processing functions, such as paragraph formatting and
justification, should be available.

8.3.5. Modelling Techniques.

The term modelling applies to applications in which an abstract model is maintained, and the
display shows a view of the model that permits certain forms of editing and simulation. Examples
include: 3D object design; molecular modelling; the viewing of scientific simulations; and network
modelling and simulation.

As far as interaction is concerned, operations on models fall into three categories:
(1) Editing the model through graphical or typed—in commands;
(2) Regenerating the model display to show the effects of changes; and
(3) Simulating continuous phenomena, for example, nuclear reactor behaviour and rotating

molecules.
Given the very wide variety of computer models, it is not feasible to describe the full range of
techniques applicable. A few examples are given here.

WCW 8.15

Interactive Graphics

8.3.5.1. Editing the Model

Editing 3D objects generally requires multiple views. The user works in one View, and can see the
corresponding point in the other views.
Network editing involves changing the nodes and arcs in the network diagram, and editing text
labels. A popular method is to allow free—form editing, followed by a semantic check. Other
systems apply comprehensive validity checks to every operation.

8.3.5.2. Regenerating the Display.

This is a major issue in 3D modelling, where display generation involves perspective transforma-
tions and the rer'noval of hidden surfaces. Where ray'tracing algorithms are used for extra realism,
computational loads are often heavy.
In simpler situations, display regeneration is required to clean up after a session of model editing.

8.3.5.3. Continuous Process Simulation.

These applications can be categorised into real~time and compute—bound processes.
Real-time applications are typified by aircraft simulation, where a fresh image is required every
refresh cycle. In some cases, such as video games, only partial image update is required.
Compute-bound processes include most cases of physical process simulation, as with nuclear reac-
tors, airframes, and traffic flow. Many of these applications are designed for only partial image
update.

8.3.6. Image Manipulation Techniques.

The black-and-white display is not a particularly versatile image-manipulation device, due to its low
gray-scale resolution. However, some applications have been developed for image editing, and are
useful in specialised circumstances, such as preparing mockups of screen layouts. A number of
painting techniques have been developed for applications of this kind.

8.3.6.1. Painting.

Freehand painting involves combining the pixels of an arbitrary brush with the pixels of the screen
image. OR functions are used for adding black pixels, and NOR for erasing. Some systems imple-
ment textured painting and airbrushing.
Constrained painting deposits pixels in the “cracks” of the grid. Extra care is needed at corners.
Enlarged painting, working on so-called “fat bits”, is useful for detailed work.

8.3.6.2. Image Editing.

Image editing techniques are used to crop images, move and copy image sections, read images from
file, and to perform other essential operations. Where images are to be repositioned, dragging is
useful but expensive.
Techniques for scaling and rotating images are often useful. They depend on sampling algorithms
(for arbitrary scale factors and angles) and rapid bit manipulation (for integer scale factors and
multiples of 90°).

8.3.6.3. Undoing Image Manipulations.

Operation reversal can be difficult or expensive to provide because large areas of the edited image
may have to be saved before editing begins.

8.3.7. Animation Techniques.

These techniques, for the most part, involve rapid regeneration of the screen image, although some
techniques are based on only partial regeneration. In general, therefore, animation techniques
make similar demands to techniques for simulating continuous processes.

8.16 WCW

Interactive Graphics

8.4. Device Independent Graphics Systems.

The objective of a standardised graphics package is to overcome the problems of program and
programmer portability. Such packages aim to be as device-independent as possible: while this is
fairly easy to achieve on the level of specific I/O devices supported by a specific computer, it is
much more difficult when the objective is machine-independence. However, certain of these pack~
ages have made great advances in standardising system predictability.
Standard packages are built around two levels: dependence and independence. The device-
dependent internal structure is provided with a user interface that attempts to provide a standard
array of facilities.
A major result of this two—level approach is modularity. The package as a whole can be built as a
series of self—contained but mutually supporting modules. The MG—l provides a specific set of
routines for data input and the creation and manipulation of pictures. The machine specific pro—
cedures provide a general modelling capability that are the basis of a higher level package. The
package then provides a wide array of modelling applications from that general capability.

For example, a single machine need not be provided with an exhaustive array of text styles, from
crude dot matrix to high quality phototypeset. Instead, a general text«handling facility can be
provided, and a facilities provided for the conversion of a standard text type into different quality
output.
Another useful product of this duality is the ability of a specific system to apply non—standardised
world coordinate transformations to a picture, and then feed the result into the display space
system in a predictable fashion. This is a further instance of a modular approach limiting the range
of functions that need be physically implemented while not precluding sophisticated effects.
A major design consideration of such a system is the command language used to implement these
facilities. Available systems typically use a high-level language such as FORTRAN or Pascal to
provide a set of device-independent functions. Thus, each standard graphics system will use a
specific language binding to implement a full range of functions for primitive handling, transforma-
tions, input, and systems control. Problems of inter-machine portability are therefore simply a
matter of dialect differences: a single programmer with only a limited range of specialist knowledge
can quite easily handle such problems as may arise.
A number of such standardised graphics systems are available. The GKS (Graphical Kernel Sys-
tem) implements the idea of modularity to the extent of making available a graded package of
facilities. Because the whole package is highly comprehensive, and not every installation will need
the complete range of features, nine upwardly-compatible levels are available. The MG-l imple-
ments the eighth level, 2b.
In all cases, input and output control routines are supplied. The special hardware and software
features of the MG—l are employed via the Generalised Drawing Primitive, which, while relating to
MG~1 specific features, does so in a predictable fashion. All transformations are handled in applica-
tion specific coordinates, and moved into device space for display. This sequence of events forms a
“graphics pipeline”, taking the form:

segment store > transform segment > clip > transform to device coordinates > output to
device.

This is a standard pattern. The MG-l’s Window Manager has the effect of modifying the above
pipeline, but also in a standardised and well-understood fashion:

segment store > transform segment > clip > transform to device coordinates > output to
window > map the window to physical screen bit map.

The last two stages of the modified pipeline are beyond the control and knowledge of the graphics
package. Instead, output is fed to the Window Manager, and the MG—l executes its normal opera~
tions.
At the heart of the GKS standardisation of machine~specific implementations is the concept of the
Work Station. A Work Station can be implemented by a variety of hardware and software. The
actual mixture is immaterial because the workstation concept is an abstract one, and merely
specifies a minimum range of facilities. If these facilities are not directly implemented in hardware,
they must be simulated in software. So long as the minimum range is available, the package will
operate. This is the case with the MG-l.

WCW 8.17

Interactive Graphics

8.5. The Window Manager

8.5. 1. Introduction.

The window system consists of four levels of software. The first level is that of the basic graphics
primitives and the rasterops. These have been described in some detail in section 8.1, and are
responsible for the creation of the images.

8.5.1.1. The Panellist Element

The panellist is a set of extensions to the kernel, and is responsible for maintaining the screen
image. The data “that is displayed in the screen image is stored in memory in raster form, and is
mapped onto the panel. This mapping process is the same as that described in section 3.2.1.3
because the raster is mapped into the screen bit map in page form. Panels supplied in this way are
known as “buffered panels”.
“Physical panels” are those where the screen image is taken directly from the user’s bit map, and
which thereby operate almost instantaneously.
Where rasters undergo some change, a buffered panel is updated using the PanelUpdate function.
Until this function is called, the screen image cannot be altered.
In order to improve the performance of image updating, only the altered areas are updated, while
the rest of the raster is left unchanged. The changed areas of the raster are specified with a
parameter to PanelUpdate.
In the case of Physical Panels, the PanelUpdate is a null operation, because the panels are
refreshed directly from the user memory, they must use contiguous memory locations for consecu—
tive scan lines, and are therefore restricted to full screen width. Because of their relationship with
physical address space, they may be moved vertically on the screen only in multiples of four scan
lines, and are fixed horizontally. However, these disadvantages may be outweighed by the speed of
image refresh.

8.5.1.2. The Window Manager Element
The Window Manager controls the contents and behaviour of the panels as they appear on the
screen, and the combination of the various panels needed to create a fully interactive window.
Furthermore, the window manager stores the positions, sizes, and priorities of each window and
associated icon for resumption at the next login.
Panels are organised in a tree-structured hierarchy, and are combined to build up successively more
aggregated entities. Each window is made up of a subsidiary interior panel for the display of
process data, and four border panels which contain the control symbols and a name field. A
window is established by the Window manager whenever one of the window creation calls is made.
These are described in section 8.5.5.

8.5.1.3. The Tool Library Element
The tools available to the application-writer are supplied by the Tool Library in such a form as to
encourage standardisation. They include pop—up menus and scrolling systems. These are considered
in section 8.3.
These four software elements combine in order to provide a management system that can control
one or more windows simultaneously. Each is owned by a process such as a text editor or a
compiler, and is active until the completion of the invoking command. Because each window is
controlled by a process in memory that behaves as though it had sole command of the system, each
window is a “virtual terminal”.
Windows consist of a rectangular screen area made up of a rectangular display area and four
borders. Within the borders are a name field to identify the controlling process, and a series of
menu options. These are selected by clicked one of the mouse buttons over the appropriate symbol,
and are used to execute such routines as window sub-division, movement, and priority control.

8.18 WCW

Interactive Graphics

8.5.2. Window Control.

The Window Manager provides two types of control. Each individual window has its own standar-
dised controls for movement, size changes. and priority control. These are the same for all win-
dows. In addition are a number of controls such as pop-up menus that are required by individual
applications, but administered by the Window Manager. Pop~up menus are obtained by clicking or
pressing a mouse button over the appropriate area of the screen. Option selection is also a function
of mouse button clicks, in conjunction with the mouse-controlled cursor.

8.5.3. Cursor Behaviour.

The cursor provides another element to the window system. The screen has its own cursor which
follows the mouse, and is used to move around the whole work area. Windows receiving keyboard
input have their own additional cursors or carets.
Upto sixteen cursor images are available to each process. These are selected according to the area
of the screen, and mixed into the display. As the cursor is moved by the mouse, it changes from one
image to another at a rate undetectable by the user. Some special applications such as painting and
sketching packages, may have a very large number of cursors, of different sizes and shapes.

8.5.4. Input Control.

Input from the mouse and keyboard are channelled into the appropriate process via the PanelRead
routine. Input events are passed through a Panel Mask which acts as a filter. The appropriate
filtering conditions are set using the PanelSetMask function.
The filtering routines of the panel mask create an input event queue: keyboard events are chan-
nelled into the window currently selected for keyboard input, while mouse events are channelled
into the window currently under the mouse. The effect of the queuing system is to provide each
recipient with a logical and acceptable instruction stream.
The Panellist contains an emulator of the VTIOO terminal with VTZOO enhancements. Using this,
any MG-l key can be re-programmed to generate a new character or set of characters. Whole
command strings can be generated with one key in this way, without interfering with the normal
ASCII code assignments. The routine used is described in section 5.8.1 of this Guide, and in the
accompanying Window Manager documentation.

8.5.5. Creating Windows.

The Window Manager will provide a new window on receipt of the WindowCreate call. The
resulting window or its icon will not become visible on the display until the WindowStow or
WindowUnstow calls are supplied. The WindowCreate call is frequently too low level, and so
functions are provided for the creation of different types of window. In all cases, the full window
structure is provided, and a name given.
Three types of window are available; full—function, physical panel, and TTY. To create a full-
function or physical panel window, the WinCreate function is used: for a tty window, the TTYWin~
Create call is used. In both cases, the arguments to these calls are described in the Tool Library
section of the Window Manager documentation that accompanies this Guide. After the completion
of these procedures, the window can be made visisble with the WinDisplay function.

8.5.6. A General Viewing Capability.

The Window Manager’s viewing capability involves the four levels of software introduced above.
The graphics routines and the rasterops are used to create images composed of lines, points, text
characters, and solid areas. A mapping routine is used to transfer the memory representation of the
image onto the relevent panel. The PanelUpdate function is responsible for the updating of screen
images from the panel’s screen raster. Because only a small proportion of the raster may change,
the PanelUpdate function copies across only the altered data.

The Panellist controls the combination of display panel and border panels that make up a complete
window as it appears on the screen. All input events, from mouse or keyboard, are handled by the
panellist, and the Window Manager executes the appropriate command.

WCW 8.19

Interactive Graphics

8.6. Interactive Applications.

For any complex graphics system, whether for the programmer or for the end—user, the most visible
aspect is the user-interface. Three factors are involved in the creation of a good user interface:
abstractness, predictability, and standardisation.
The precise nature of the user interface is regulated by the degree of abstractness involved. This
determines the range of operations available without explaining how they are implemented. The
programmer must know what is available without necessarily knowing how it is implemented. In
order to ensure that the facilities available are as easy to use as possible, they must operate in as
predictable a way as possible. This predictability is a function of standardisation.
The MG-l‘s graphics handling system is standardised on many levels. The high~level graphics
packages available relate to international conventions, while providing access to the specific capa-
bilities of individual machines; standard command languages are used throughout, for example, the
generalised assignment of commands to the mouse buttons to avoid clashing with application com-
mand allocations; the MG-l’s graphics library provides a set of primitives handling devices that acts
as the basis of higher level operations, and are written in standard control languages; the command
set operates in as normal a way as possible, and avoids accessing routines through unfamiliar
combinations of key-strokes or other events.

A further element of system predictability is the use of feedback to highlight system states.
While this set of considerations is a major factor in determining the form of graphics systems for the
application programmer, it should also influence the programmer during the writing of systems for
the end-user. It is typically the case that an end-user will be less familiar with a system than the
writer, unless consultation has been very close. The user interface should be very carefully
designed; some of the references in Appendix F provide coverage of this specific point.

8.20 WCW

Chapter 9
System Administration

9. 1 . Introduction.

The MG-l Workstation provides powerful computing facilities for both single~user and multi-user
enviroments. As a personal workstation, the MG-l may be used to reflect the idiosyncracies of
individual user style. Additional management considerations must be taken into account if the
MG—l is to be used by two or more users.
This chapter outlines the major System Management considerations and should be read in conjunc-
tion with Chapter 10 which describes aspects of System Security for the MG—l.
This chapter will introduce a large number of powerful GENIX commands. The new user is advised
to read the relevent sections in the GENIX Programmer’s Manual: the experienced UNIX user
should also refer to these sections to ensure familiarity with the more detailed syntactical conven—
tions.

9.2. System Management and the Superuser.

The major responsibilities of System Management include:

1. the initial installation of the MG-l
2. the adding and deleting of user accounts, passwords and file systems
3. the monitoring of system resource distribution
4. the “backing up”, or copying, of all files to guard against accidental loss of programs and

data.
To protect confidentiality and guard against accidental data loss, GENIX automatically restricts
access to many system files; for example, the rm command for file deletion will not access ‘
system files. GENIX also provides a protection mechanism to allow users to restrict access to their
own files.
There is one user, however, who has unlimited access to the system — the “superuser”. This user
automatically has the login name “root”. A super user is required irrespective of whether the
system is to be used in a single-user or multi—user environment.
The superuser can read and change anything on the system whether or not the material is protected
against other users. Only the superuser can perform certain vital functions such as adding and
deleting user acounts from the system.

There are three initial System Management considerations relating to the superuser:
1. Decide who is to be superuser. In a single—user environment the choice is already made.

Within a multi-user environment there may be certain circumstances in which it is appropriate
for more then one person to be able to perform the duties of superuser. Any person with
knowledge of the root password can log in as a superuser.

2. With root’s unlimited access even minor mistakes can cause major problems. Whoever per-
forms the superuser duties should therefore carry out their everyday work as an ordinary
user, and maintain a separate root account.
Log in as root only when it’s absolutely essential.

3. In a multi—user environment, ensure that the superuser facilities are available only to author—
ised users. In order to maintain system security, it is essential that passwords are known to as
few personnel as possible.

WCW 9.1

System Administration

9.3. Root Password.

The root password should not contain less than six characters nor should it be easy to guess: avoid
proper names, nicknames, telephone numbers or obvious dictionary words. Preferably choose a
random mixture of upper and lower case characters and numerals. Then be sure to commit the
password to memory. Note that only the superuser can choose or change the root password.
After following the start-up procedures described in Chapter 5 the MG-l screen will display the
special root shell prompt. This is a ‘#’ symbol, irrespective of the shell in use. In response to the
login prompt, type

root

GENIX then acknowledges the command by displaying a further shell prompt. Now type the
command

passwd root

The argument to ‘passwd’ is the user name, in this case ‘root’. GENIX requests the new password
and, as a further check, requests confirmation of the entry:

New password:
Retype new password:

Any discrepancy between the two entries causes an error message to warn of an entry mismatch.
To preserve security, the password is not “echoed” on the screen. After the password has been
typed twice, the system automatically records the entry in the GENIX file /etc/passwd.
Pressing <RETURN> in response to the prompt for a new password represents a request not to
change the existing password.
If a superuser forgets the root password, recovery is possible by way of the MG-l Security Disk.
This procedure is described in Chapter 11.

9.4. Adding new Users: newuser

Adding new accounts to the system is one of the tasks of a superuser. Even within a single-user
environment, the superuser should follow the procedure described below in order to log in as an
ordinary user.
Each user has a login name which is the name by which the user is known to the system. This is the
name by which system surveys such as the ‘who’ command identify users, and accordingly, user
names are public information.
Most users find it convenient to use a shortened form of their own real name, or perhaps their
initials. Note that spaces, tabs and special characters, where used, are considered to be an integral
part of the name and must be included at each login.
To assign a new user name, log in as root, and in response to the root prompt type:

newuser

The system responds with:

Type login name:

The program now requests the full personal name of the new user. This is used in certain of the
mailing options available under GENIX:

Type full name:

If the first part of the full name is the same as the login name, it can be represented by the
ampersand (&) character. For example, a user called John Smith , with the user name ‘john’ could
type:

& Smith

9.2 WCW

System Administration

The system then procedes to establish the user account.
The new user account is now created and the various details stored in the GENIX /etc/passwd file.
The new user can now log in on the system.

The superuser has no need to know other users’ passwords since the superuser automatically has
full access to the entire GENIX system, including user files that are protected against all other
personnel.
Users can change their existing password by logging into the system, and against the shell prompt,
typing

"/o passwd

GENIX responds by prompting once for the user’s current password, if any, and twice for the
user’s choice of new password.
The password entry in the /etc/passwd file is changed to the new password. Root may occasionally
need to alter entries in the /etc/passwd file; procedures for performing these changes are described
in Volume II of the GENIX Programmer’s Manual.
The superuser can change another user’s password by issuing the following command:

“/0 passwd username

and following the screen prompts as above.

9.5. Removing Users

Removing a user’s access to the MG-l system is a two stage process:

1. removing the user’s files from the system, and
2. running an editor to remove the user’s password from the password file.
User files should be carefully reviewed prior to deletion as they may be required later, and can be
transferred to other users and to floppy disk. It is important to remember that user mail should be
removed also.

To remove a user’s files (using ‘john’ as a specimen user name) type:

% ed /users/john
"/o rm ~tr *
% rm -f /usr/spool/maiI/john

These three commands respectively change position to the relevant user directory, and force dele-
tion of both files and directory, and remove the user’s mail box.
Finally, an editor such as ed can be used to remove the user’s password from the file /etc/passwd.
Type the login name of the user to be removed from the system, followed by <RETURN>.
Deluser marks the user’s entry in file /etc/passwd as unusable. If the user has mail, all messages are
deleted, and the user’s mailbox is removed from the system.

9.6. System Integrity

During day-today use of the system a number of inconsistencies can occur. For example a system
crash can adversely affect the internal GENIX housekeeping systems which may not be able to
perform their normal functions. This may result in directory listings not reflecting the actual file
system, or there being file corruptions within the directory structure. The fsck program performs a
file system check to resolve these inconsistencies.

9.7. The fsck Program.

The five-phase fsck program is run automatically by GENIX at startup time but the superuser may
run it interactively at any time.
The fsck program should be run only while the system is in ‘system maintenance’ (single user)
mode. This is to ensure that no user processes are using the system or accessing files.

WCW 9.3

System Administration

The following command performs a check on file system h on disk device t:

°/o fsek /dev/hd0h

A report of the five checking phases of the program is displayed together with a report on the
number of files, blocks used and available blocks on the system:

M Phase 1 — Check Blocks and Sizes
w Phase 2 — Check Pathnames
M Phase 3 — Check Connectivity
M Phase 4 — Check Reference Counts
M Phase’5 — Check Free List

1137 files 8387 blocks 2651 free

If fsck finds a problem then it reports to the user and asks if a correction is required. Occasionally
a damaged or inconsistent file has to be deleted by GENIX in order to make the correction. In such
cases, loss of information is usually minor and GENIX reports on the nature of the correction.
Remember that any minor deletions which GENIX has to perform are invariably less damaging to
the system than a file inconsistency which is allowed to continue.
For full details, see section 8 of Volume I of the GENIX Programmer’s Manual

9.8. Daemon Processes

GENIX runs a series of programs which run automatically whenever the system is in use. Called
“daemons” (pronounced “demons”), these programs run continually and periodically activate sys—
tem checks and basic system functions.
This suite of programs includes:
1. The “update” daemon which activates the “sync” primitive on an automatic basis every thirty

seconds. All data in core memory that should be stored on disk is written out to ensure that
the contents of the system disk are as up to date as possible in the event of a major problem
such as a system crash or abnormal shut—down.

2. The “lpd” daemon superintends operation of the line printer, /dev/lp. Baud rate is set as an
argument to the daemon. Console—displayed error messages are available to diagnose lpd
problems.

3. The “cron” daemon acts as an internal alarm clock for the control of commands and jobs to
be executed at pre-specified times. The cron program repeatedly examines a file called
/usr/lib/crontab for instructions to perform these functions.

9.9. Disk Space

Available disk space quickly becomes a valuable commodity on any computer system as users
compile programs, create and edit files and directories, and perform other tasks. When the system
runs out of disk space, it is effectively paralysed; no new files can be created, and existing files
cannot expand.
A key function of the superuser is to monitor space availablility and usage. It is advisable to
perform a periodic disk space inventory, especially in a multi—user environment, in order to monitor
the use being made of disk space by individual users. The frequency of survey depends on the
demands being made on the system.
GENIX provides three principal tools for monitoring disk space;
df monitors the amount of free disk blocks,
quot summarises each user’s disk space quota, and
du summarises disk usage.
In the following discussion of these commands, only the general features are described. For full
details of these commands refer to Volume I of the GENIX Programmer’s Manual.

9.4 WCW

System Administration

9.10. The df command.

The df command reports the number of free blocks available on a specified data structure. If the
argument is a filesystem (eg /users/john), df reports the number of free blocks available on that
filesystem: if the argument is a filename, the report displays the number of free blocks in the
filesystem containing that file. If no filesystem is specified the available free space on all filesystems
is displayed. The reported numbers are in double block units of 1024 bytes.
With experience, the superuser will become aware of the figure which represents a comfortable
margin for operation of the system. As a general rule it is advisable to maintain available free space
at around 15% of total capacity, more if system usage fluctuates, less if it is relitavely stable.

9.11. The quot command.

If, after using the df command, it becomes clear that a disk space problem exists, the quot com-
mand can be used to determine the number of blocks owned by each user.
For example:

% quot —f /dev/hd0a

produces a list of every file on the root file system together with the name of the file’s owner and
the file size in blocks.

9.12. The du command.

The disk usage command (du) reports the number of blocks (of 512 bytes) currently being used by
individual directories, subdirectories and files.

If du is used without specifying the name of a file or directory, the size in blocks of everything
below the current directory is reported. In order to increase or decrease the scope of the du
operation, change directory position with the cd command.

If a directory is specified. du reports the block size of that directory. For example

% du /users

generates a complete report on disk utilisation since the /users directory contains all the subdirec-
tories and files for all currently recognised users.

The following is an example du report produced in a multi—user environment:

108 /users/richard/admin
478 /users/richard/dgraphic
1099 /users/richard/junk
1685 /users/richard
36 /users/john/manual
235 /users/john/documentation
271 /users/john

As well as displaying the number of blocks owned by individual files, du gives a total of the blocks
used by a particular user. The three files (admin, graphic and junk) held in the ‘richard’ directory
add up to 1685 blocks. ‘
Similarly, John’s usage is 271 blocks. In this instance, the superuser would probably wish to discuss
with Richard whether there was a genuine need for all the disk space currently in use.

9.13. File Systems and Archiving.

The formatted hard disk is the basic storage mechanism for the MG—l’s operating system and user
data systems.

These various data structures are stored as a tree~structured hierarchy of files known as the file
system. The entire file system can reside permanently on the hard disk: however it is advisable to
take advantage of the facilities for distributing data among a combination of devices.
Additional file systems can be appended, or “mounted”, to specified directories within the hard
disk’s resident file system. Once an additional file system is mounted, the GENIX copy and move

WCW 9.5

System Administration

commands (cp and mv) can be used to transfer files between physically separate storage media.
Mounting a file system held on a transportable medium, such as a floppy disk, allows the creation
of additional space on the integral hard disk, the physical transfer of information between remote
sites and the addition of applications packages. These procedures are run through commands held
in the /bin directory, and may be executed by the superuser or by normal users.
The overall procedure involves:
1. formatting one or more floppy disks,
2 providing them with an outline file structure,
3 connecting-the physically separate file structures,
4. moving or copying the relevant files, and
5 unmounting the floppy disk files.

9.14. Formatting a Floppy Disk: fdfmt

To format a disk which includes a write protect tab, first ensure that the disk does not already
contain valuable information, then remove the tab and insert the disk into the disk drive.

In response to the shell prompt type:

% fdfmt

The floppy disk drive light will illuminate until the formatting is complete, a process that usually
takes approximately one minute.
A floppy disk already containing data may be reformatted using the same routine, but care must be
taken to ensure that none of the information is needed, as reformatting completely erases existing
files and directories.

9.15. Creating a Floppy Disk File System: mkfs

Insert a formatted floppy disk into the disk drive and type the mkfs command plus the appropriate
arguments in response to the shell prompt, for example:

% mkfs /dev/rflp 800

The first argument to the command is the filename of the archive; /dev/rflp is the default. The
second argument is a numeric size measured in kilobytes. The effect of this operation is to create
a single empty directory on the floppy disk.
The floppy disk drive light will again illuminate, for about 15 seconds, by which time the file system
will have been created.

9.16. Mounting a Floppy Disk File System: mount
Load the formatted floppy disk containing a file system into the disk drive. In response to the
GENIX prompt, type the mount command plus the appropriate arguments, for example:

% mount /dev/flp /flp

The first argument announces which device contains the mounted file structure. In this case, the
floppy disk drive (driven through the /dev directory) is the parent device. The second argument is
the name of the directory created on the floppy disk by the mkfs command. In this case, the
directory is called /flp.
Once mounted, the floppy disk file system becomes an integral part of the hard disk file structure
and can be treated in the same way as any other directory.

9.17. File Transfer to Floppy Disk cp or mv

To copy a hard disk file onto a floppy disk insert the formatted floppy disk containing a file system
into the disk drive and, in response to the shell prompt, type the op command, for example:

% op myproge /flp

9.6 WCW

System Administration

The first argument is the filename, with pathname if necessary; the second argument is the destina-
tion device, in this case the floppy disk drive.
To move a file from the hard disk to the floppy disk use the move command mv:

% mv myprogc ltlp

Note that the file is physically removed from the source device by the move command and is no
longer accessible on the hard disk.

9.18. File Transfer from Floppy Disk: cp or mv

To copy a file contained on a mounted floppy disk onto the hard disk, the above procedures are
reversed:

% op /f|p/myprog.c myprogc

or, using the ‘.’ abbreviation to repeat the last-used filename:

% cp lflp/myprogc .

The two command arguments are the source and destination datanames respectively. The cp com~
mand can be used for installing application packages.
The mv command is used for file transfer to the hard disk if the file is no longer required on the
floppy disk.
In order to protect this information, the —r option may be used:

°/o cp —r /f|p/myprog.c .

This version of the command allows the disk to be read only, and not amended.

9.19. Unmounting a Floppy Disk File System: umount

To detach the file system held on a floppy disk from the hard disk file system, prior to removal of
the floppy disk, type:

”/0 umount /dev/flp

where the argument is the device currently containing the mounted files.
As a further protection, it is advisable to apply a write~protect tab to the disk.

9.20. Archiving and Backup.

The long—term storage and retrieval of infrequently used files (called “archiving”) is achieved with
the ‘flar’ command. The duplication of all or part of the hard disk system to prevent irretrievable
loss of files due to system failure is called a “backup”, and is achieved by using the ‘dump’ com-
mand, which directs a file system to either the floppy disk drive or a tape streamer, if fitted.
Retrieval of previously dumped files is achieved with ‘restor’. All of these are described below.
When new floppy disks are to be used as the archiving or ‘back-up’ media, they must first be
formatted using the fdfmt command but the file system utility mkfs is not required.
The reader is referred to sections 1 and 8 respectively of Volume I of the GENIX Programmer’s
Manual for full details of these archiving and file system commands.

9.21. Archiving to Floppy Disk: flar c

To archive one or more directories or files onto a formatted floppy disk, use the cd command to
move to the directory containing the data objects involved, and type the flar command, using the
relative form of file name; for example:

% Cd /users/john
% flar C flie1 fileZ fileB

The options available to the flar command are many and varied, and are described in full in section
8 of Volume I of the Programmer’s Manual. The arguments supplied above are as follows:

WCW 9.7

System Administration

The ‘c’ element is a single character function code which instructs GENIX to create a new archive,
overwriting any material already stored. The single function code used here may be combined with
a number of other codes, which act as function modifiers.

/dev/rflp is the default name of the archive device, but other devices may be specified.
The third argument is the set of file names to be archived.
The initial move directory command “cd pathname” may be incorporated into the flar command by
preceeding the list of directories or files to be copied with “—C pathname”.

% flar c ~C/users/john filei fileZ file3
b

The message “change volume” will be displayed when a floppy disk becomes full. To continue the
archiving procedure, remove and label the full disk and insert another formatted disk.
If there are no formatted disks available, new disks can be formatted immediately because flar can
be asked to return to the shell prompt each time a disk is filled. Run the floppy disk formatting
system, fdfmt. When the disk drive light extinguishes, indicating the completion of formatting, type
“exit” when using the C Shell, or the <Ctrl><d> sequence when using the Bourne Shell, against
the shell prompt and the archiving procedure resumes.

9.22. Restoring Archived files: flar x
To restore the complete contents of a floppy disk to the current directory, type:

°/o flar x

The flar x function extracts files from an existing archive. Any function applied to flar can be
modified by adding other codes. In order to restrict the operation to a specific list of files or
directories, the data names should be given as an argument to the command, each name separated
by a space.

9.23. Scheduling Backups: dump

It is customary to maintain two forms of system backup: a periodic full backup in which everything
on the system is copied and, in the intervals, incremental backups to record the changes made to
the files since the last full backup.
Naturally, the precise backup schedule depends on the degree of activity of the system. Even with
low levels of activity, however, it is advisable to schedule periodic backups at least once a month.
The description of the dump command in section 8 of Volume I of the Programmer’s Manual,
includes a suggestion for scheduling backups which utilises the backup levels (0—9) available with
the dump command.
For example, to dump the entire filestore (dump level 0) for a 45 Mbyte system type:

% dump Ou dev/rta
% dump Ou dev/rth
% dump Ou dev/rtg

Only the first two of these commands (for partitions a and h) are required for 10 Mbyte and 22
Mbyte systems.
The default filenames are /dev/hf0a for the source device (ie the hard disk drive), and /dev/rflp for
the destination device (ie the floppy disk drive).
These default names may be overruled using the —f option which accepts a given filname instead.
Full details of the dump command are given in section 8 of Volume I of the GENIX Programmer’s
Manual.

9.24. Restoring Dumped Files: restor

The restor system reads back file systems, or individual files, dumped to a separate storage
medium. Restor may, on rare occasions read back a whole dump (this is one way to copy a file
system from one physical structure to another) but is more often used to read back files selectively.
This is achieved by way of the x function referring to files and directories named as arguments to

9.8 WCW

System Administration

the command.

The files and directories held on a dump volume can be listed using the dumpdir command.

The command

% restor x /john/memos

will restore ‘/john/memos‘ from the dump volume (accessed by way of its default tilename /dev/rtlp)
to the hard disk. The x option is used to specify individual files to be restored. Note that this
operation will not replace the file in directory “/user/john": instead, it writes it into a file given a
numeric name by the restor procedure.
The dumpdir and restor commands. and their full range of options. are described in full in section
8 Of Volume I of the GENIX Programmer’s Manual.

9.25. Monitoring Processes: ps

All functions running on the system, such as system and user programs, editing, compiling and data
entry are referred to as “processes”. Each user may have several processes running simultaneously.
To check these, the user types the process status command, ps:

"/0 ps

which causes (313l to list the user’s processes currently running.

A variant of the ps command

“/0 ps —ax

gives a list of all processes currently being run, irrespective of owner. This command is a useful
system survey facility, and is of considerable value to the supcruser. As with the majority of
GENIX commands, many alternative options are available: full details are available from section 1
of Volume I of the Programmer’s Manual.
The following is typical output from a ps —ax command:

PID TT STAT TIME COMMAND

3 2 Z 4.05 emacs shexec.c
74 6 T 2.15 ~sh
76 3 R l.22 csh
84 5 R 0.07 ps —ax

P11) is the “process ID” ~— a number GENIX generates and uses to identify a
process,

"IT indicates the number of the terminal from which the process is running,

STAT is the “state” report for each process:

I Idle
R Running
S Sleeping
T Stopped
Z Terminated (Zombie),

TIME indicates the total amount of time the process has been running, and

COMMAND is the command name of the process.

WCW 9.9

System Administration

9.26. Communication in a Multi-User Environment.

There may be occasions when the superuser will need to communicate with one or more users on
the system. Similarly, users may need to communicate with each other and with the superuser.
Such communication can be instantaneous (the ‘write’ and ‘wall’ commands) or can be delayed
until the user next logs in to the system (the ‘mail’ command, and the message of the day facility).

9.27. Message of the Day.

A built-in message of the day file can be used by the superuser as a bulletin board to keep users
informed. Impending downtime, device availability, disk shortage, meetings, scheduled mainte-
nance and other matters are typically documented using this facility.
The superuser enters the information in the file /etc/motd by means of a text editor such as ed,
using the command:

"/0 ed etc/motd

to create the message text.
Each time a user logs in, the message of the day is automatically printed on the screen. File access
permission for /etc/motd is generally set as read access for all users and write access for administra-
tive personnel only.

9.28. Software Administration.
Further important administrative facilities available to MG~1 users relate to software development,
and include the MAKE and SCCS utilities.
1. MAKE updates a target file if it depends on prerequisite files that have been updated since

the last update of the target itself. Commands held in /makefile operate upon a list of depen-
dencies listed in /Makefile. Note that these are different. Dependency lists consist of target
files and their associated prerequisite files, and may involve data objects held on more than
one storage device.

2. The SCCS Source Code Control System is a series of commands for controlling the changes
made to files containing text or program source code. It keeps track of all changes to the
contents of a file, and makes each version available to the user. Comments explaining changes
may be recorded; different versions may be merged; file differences may be listed; and
unwanted amendments may be discarded.

SCCS is supported by its own on-Iine aid system called SCCSHELP. To operate this facility, type
the sccshelp command, using the subject title as an argument.

9.10 WCW

Chapter 10
Security

10.]. Introduction.

This chapter on system security necessarily duplicates some of the information in Chapter 9. How-
ever, the general areas of System Administration and Security are sufficiently separate to warrant
a modified approach.
GENIX is an operating system which allows several users to be logged into the MG—l at the same
time. It supports a full range of timesharing and multi-user facilities. To keep track of users and
their needs, a human systems manager is required. in a multi—user environment this task is assigned
to a privileged user, known as the superuser whose user identification is ‘root’, and who has
responsibility for system security.

10.2. The Superuser.

The superuser possesses privileges relating to overall control of the system. Many of the superuser‘s
functions have been described in Chapter 9.
The superuser can override all user-set file protections and can access all the files and programs on
the system, some of which may be confidential or potentially dangerous to the integrity of the
system. The only exceptions are those files that have been processed by the ‘crypt’ encoding utility.
However, most of these sensitive areas are protected from the user operating in a non-root environ—
ment.

Superuser privilege is password protected. Without knowledge of the root password (arbitrarily
chosen by the superuser) the ordinary user cannot: gain access to the full variety of GENIX utilities
and special files which support the essential security functions.
The role of the system manager in a multi-user environment is to authorise users, issue individual
passwords and user identification numbers, create file directories and take care of the many admin-
istrative needs that arise when numerous people use the same computer,

10.3. Passwords.

A password protected system such as GENIX prevents unauthorised access to the system by
demanding a password, arbitrarily chosen by the authorised user, and ideally consisting of not less
than six mixed case alphanumeric characters. Passwords, like any other information on a GENIX
system are file—stored. but gaining access to the contents of the password file does not compromise
the secrecy of the passwords as they are held in a ‘scrambled‘ or encrypted form.

10.4. System Security.

System maintenance operations should be carried out only by the superuser. In a single—user
environment, these are available only to the user’s root account. In a multi—user environment,
maintenance should be carried out only when the superuser is alone in using the system. Many
maintenance routines can compromise standard DP processes, and cause system failure.
To provide a higher level of security for the MG-l Workstation, GENIX enters multi-user mode
upon power—up and requires the superuser password to enter the single—user mode needed for many
maintenance routines.

The MG-l can be powered up in single—user mode only by bootstrapping GENIX from the security
floppy disk available from Whitechapel. This disk should be stored securely by the superuser and
used in the event of the root password being forgotten. This procedure is described in Chapter 11.
The procedure for initially assigning the superuser password is described in Chapter 9.

WCW l().l

Security

10.5. User Security.

The superuser issues every user a ‘login name‘ (also called the ‘user—id’) and, on password pro—
tected systems, an initial password. Both are composed of lower case characters only; when logging
in, ensure that the shift lock key on the keyboard is not engaged. The login name is public informa-
tion, and is used in many of the system survey routines available to the user. The password is
known only to the user, and can be changed at will with the passwd command, so long as the
original password is known.
The superuser also assigns a “user group number“ to each user associated with the same project or
administrative task.

10.6. File and Directory Access Permission.

GENIX includes a formal scheme of assigning access permission to files and directories. Under this
scheme, each data object can be accorded three forms of access permission, read (r), write (w). and
execute (x). Any of these access codes may be refused.

The meaning of ‘read’ permission depends on whether the data object is a file or a directory.

To read a file is to access the information held in the file. A user therefore requires read permission
to use the cat command on a file. for example.
To read a directory, which contains not individual pieces of information but a group of files and
perhaps other directories, is to examine its “table of contents". A user therefore requires read
permission to use the ls command, for example.
‘Write’ permission on a file allows the user to modify its contents. Write permission on a directory
allows the user to modify it by creating, removing and renaming files or sub-directories.
The meaning of ‘execute' permission also has two different meanings. It is only used in relation to
a file when that file is a program. in which case it gives the user permission to run the program.
Execute permission on a directory permits the user to search the directory for a file to execute.
There are also three categories of users, for whom specific forms of access permission can be
assigned: an individual user (u), a group (g) and others (0).
The ‘individual user’ is the owner of the file or directory. A ‘group’ comprises users sharing the
same group ID number. The group if) 200 is initially assigned by the system to all new users.
‘Others‘ covers all users outside the group.
A variant of the ‘list directory contents’ command (Is) is used to examine the access permission
assigned to a file.
Typing ls —1 followed by the pathname of a directory, or file, produces a ‘long’ listing which
enumerates the characteristics of files, such as access permission, number of links (connections
between disk blocks), name of the file creator, file size in bytes, date when the file was created or
last changed, and the file name.

A typical dialogue which might occur when the ls —l command is issued is shown below:

70 IS .4
-rw—rw---— 1 john 97 Aug ~ 17 10:51 Sda‘ta
drwxr—xr-x 2 bob 1024 July 9 4:16 subd‘t
-rw-r----- 1 iohn 142 May 23 22:01 tg

Access permissions are specified by the first ten characters. The first character is:

d if the entry is a directory
— if the entry is a file

The next nine characters are grouped in three sets of three characters each. The first set refers to
user (owner) permissions; the second set to group permissions; and the third set to permissions for
all other users. Within each set, the three characters indicate permission to read, to write, and to
execute the file as a command.
Character indication:

10.2 WCW

Security

read permission granted
write permission granted
execution permission granted

— indicated permission is not granted.

x
g

-a

10.7. Default Protections.

The access permission is set in either absolute or symbolic terms. Absolute representations take the
form of an octal number whose use is described in outline below, and in the chmod entry of section
1 of Volume I of the Programmer’s Manual. The symbolic form takes the form of the access and
user permission codes described in section 10.6, above.
File access permissions are initially assigned a default value that is controlled by the ‘umask’
associated with each user. To determine this setting, type

% umask

The system responds with a three digit octal value representing the binary complement of the
default protections.
Suppose for example that the default file access permissions for a user are:

rwxr-x-—x
which gives read, write and execute permission to the user’s own newly created files. read and
execute permission to users in the same group, and execute permission to all other users.
Arranging these permissions in groups of three gives:

rwx r-x --x
and representing them in binary form with 1 for a permission. and 0 for a refusal:

111 101 001
translates into the octal number

751
for the permissions granted. The octal complement of 751 is 26, or 000 010 110, which represents
the permissions not granted and will be the value returned by the system when the umask command
is used. For example:

"/0 umask
026

To change the umask setting, the user types umask followed by the requisite octal value.

For example:

% umask 77

ensures that subsequently created files are accessible to no one but the owner.
For further details, see the creat, mknod and chmod references in section 2 of Volume I of the
GENIX Programmer’s Manual.

10.8. Changing Access Permissions.

The chmod command is used to modify read, write and execute permissions for files and direc~
tories, and uses the symbolic form of permission representation.
To change access permission, type chmod followed by the following arguments:

1. whose permission is to change: user (11), group (g), other (0), or all (a).
2. whether permission is to be: added (+), removed (—) or set (2)
3 type of permission being changed: read (r), write (w) or execute (x)

WCW 10.3

Security

4. the name of the tile or directory
For example:

To deny read and write access to the file called sdata, first obtain a listing of the current file
permission settings, using the ls —l command:

% ls -l sdata
-rw-rw---- 1 John 97 Aug 17 10:51 sdata

In order to remove read and write access to users not the owner of the file, and outside the owner’s
group, the owner types:

°/o chmod owrw sdata

The arguments to this command are the ‘others‘ option, the ‘remove read and write permission’
sequence, and the filename. This example assumes that the user is within the directory containing
the sdata file. lf this were not the case, the full pathname of the file would be specified.

WCW 10.4

Chapter 11
Troubleshooting

11.1. Introduction.

The MG-l Personal Workstation is a robustly designed and engineered system, manufactured using
single‘board techniques. The possibility of operational problems is therefore reduced to a
minimum. As with any electronic equipment, care must be taken when physically handling its
individual units, and when connecting or disconnecting the inter—unit leads.
The MG—l does not incorporate user—servicable parts: in the event of the system becoming inoper-
able due to a disk crash or a unit being physically damaged, the supplier or support agency should
be contacted for assistance.
This chapter describes the diagnostic facilities and software remedies available to the system
administrator and user in the event of operational difficulties.

11.2. The System ROM.

Under normal operating conditions, the MG-l System ROM automatically bootstraps the operat‘
ing system from the hard disk.

Under faulty conditions the System ROM is intended to identify any faults which prevent the
bootstrap procedure. In addition, the system ROM allows special~purpose diagnostic programs and
stand-alone software to be loaded from floppy disk.

11.2.1. Power-on Tests.

The tests performed by the ROM upon power—up identify faults that would prevent more sophisti—
cated diagnostic tools from being loaded.
The diagnostic LED is located under the front panel flap of the computer unit. Following power-on
the system ROM illuminates the LED for one second to indicate the correct functioning of the
processors, ROM and associated logic.
A sequence of tests is then performed by the System ROM which indicate detected faults by
flashing a binary error code on the diagnostic LED. This acts as the error reporting system so as to
prevent interruption of fault listing during display malfunctions.
When an error is detected the diagnostic LED repeatedly flashes a four—bit code (most significant
bit first) using the following timings:

LED ON for 1 second: bit = 1
LED ON for 0.25 seconds: bit = 0
LED OFF for 0.25 seconds: inter—bit gap
LED OFF for 2 seconds: inter-word gap

These error codes pin—point failures in specific areas of memory and system logic. In the event of a
system failure, report the nature of the failure and, when applicable, the error code sequence
displayed by the diagnostic LED. The translations of these codes are given in Appendix E.

11.3. Forgotten Root Password.

To prevent unauthorised access to system files and maintenance routines, the MG-1 bootstraps into
multi-user mode and requires the ‘root’ password to enter system maintenance mode.

This is in contrast to many UNIX type systems which power-up directly in system maintenance
mode, giving any user direct access to sensitive system files.

The system administrator may opt to include a password procedure for the superuser or for all
users. If the system administrator forgets the superuser password and a securely held record is not

WCW 11.1

Troubleshooting

available, entry to system maintenance mode can only be achieved by bootstrapping the MG-l .
from the ‘system security’ floppy disk available from Whitechapel Computer Works.
Details of bootstrapping from a floppy disk are given in section 5.4.

11.4. Creating Additional File Space.

The complete GENIX operating system occupies some 14 Mbytes of storage, but because GENIX
is not hierarchical, many files may be deleted or archived without compomising the system.
Many of the available files and utilities will be used infrequently, if at all, on some systems. The
on-line manual for example occupies 1.4 Mbytes and can be regarded as dispensable if the hard
copy manual is available. If this is the case, two options are available; total removal, and hence the
permanent loss of the manual files, or the archiving of the files to floppy disk for subsequent
restoration when required.
The rm command is used for the total removal of directories and files. For example, to remove the
manual directory held in the usr directory, type:

°/o rm —rf /usr/man

There is an alternative to the full manual. In order to maintain the one-line description database
“what is”, run ‘/usr/lib/makewhatis’ before removing the manual files. .
Two further programs which serve no further purpose once the manual is removed are: the manual
print program /usr/ucb/man (l7 kbytes) and the manual formatter letc/catman (13 kbytes).
Note that removal of a file requires write permission on its directory, but neither read nor write
permission on the file itself.
For archiving to floppy disk, use the flar command. Ensure that a sufficient supply of formatted
floppy disks are available by using the fdfmt command to format new or obsolete disks. The MG-l
formats floppy disks to a capacity of 800 kbytes, so two disks will be required to access the full
manual and its support files.
To archive the on-line manual type:

% Cd /
% flar c usr/man

A complete listing of files held on the system disk, together with their file size, is obtained with the
following command:

% ed /; ls —Rcs

The games programs occupy 768 kbytes and can be removed with: ‘

% rm —rf /usr/games

or archived with:

0/0 Cd /
°/o flar c usr/games

The text processing utilities also include candidates for removal on most systems. The typesetting
utility /usr/bin/troff occupies 60 kbytes and is likely to be required by relatively few systems.
Similarly the formatting program lusr/bin/nroff is unlikely to be used frequently. However, nroff
should not be removed from systems maintaining the on-line manual since it is used by man for
formatting. If both nroff and troff are to be deleted, or archived, the following macro packages can
be removed:

/usr/lib/tmac/tmac.* 67 kbytes
/usr/lib/me 21 kbytes
lusr/lib/me/src 47 kbytes
lusr/lib/macros 75 kbytes
/usr/lib/term/tab=i< 30 kbytes
/usr/lib/deroff 22 kbytes

WCW 11.2

Troubleshooting

The following spell utilities (total 200 kbytes) may also be of limited use for some systems:

/usr/bin/spell 1 kbyte
spellin 11 kbytes
spellout 11 kbytes
/usr/1ib/spell 17 kbytes
lusr/dict/hlista 56 kbytes
hlistb 56 kbytes
hstop 56 kbytes

The dictionary itself, /usr/dict/words, occupies 204 kbytes, but note that it is used by some of the
games.
A further 204 kbytes of the system disk is occupied by text processing utilities ‘diction’, ‘style’ and
‘explain’:

lusr/bin/diction lkbyte
explain 1 kbyte
style 1 kbyte
/usr/lib/dict.d 9 kbytes
dprog 12 kbytes
explaind 14 kbytes
stylel 76 kbytes
style2 64 kbytes
style3 26 kbytes

The following mail programs may be considered superfluous to the needs of some systems (the =
sign indicates a program link):

lbin/mail = /bin/rmail 25 kbytes
/usr/ucb/Mail = /usr/ucb/mail 68 kbytes

The Secretmail system comprises the following files:

/usr/bin/xsend 28 kbytes
lxget 28 kbytes
/enroll 23 kbytes

The Network Mail facility consists of five files:

/ete/delivermail 41 kbytes
/usr/Iib/aliases 1, kbyte
/usr/q/newaliases 27 kbytes
/usr/ucb/prmail 14 kbytes
lusr/ucb/from 14 kbytes

MG-l Systems which are not intended to be linked to other UNIX systems, either by local network
or phone line, need not include the UUCP UNIX to UNIX copy routines (354 kbytes)

lusr/lib/uucpM 183 kbytes cg”.
/usr/bin/uucp 30 kbytes
uudecode 17 kbytes
uuencode 11 kbytes
uulog 17 kbytes
uuname 13 kbytes
uupoll 19 kbytes
uusend 18 kbytes
uusnap 15 kbytes
uux 31 kbytes

The SCCS source code control system (591 kbytes) is only required for those MG-l systems main-
taining versions of userawritten programs.

WCW 11.3

Troubleshooting

/usr/nsc/admin 64 kbytes .
bdiff 29 kbytes
comb 48 kbytes
delta 72 kbytes
get 72 kbytes
sees 36 kbytes
sccsdiff 2 kbytes
sccshelp 21 kbytes
prs 64 kbytes
prt 32 kbytes
rmchg ' 64 kbytes
unget 47 kbytes
val 23 kbytes
what 17 kbytes

Systems not utilising the RATFOR version of the FORTRAN programming language need not
maintain the RATFOR translators (110 kbytes).

lusr/bin/struct 1 kbyte
/usr/lib/struct/* 89 kbytes .
/usr/bin/ratfor 20 kbytes ’

If the C language program verifier, lint (298 kbytes), is not required, the following files can be
removed:

/usr/bin/lint 1 kbyte
/usr/lib/lint/* 297 kbytes

MG-l systems intended solely for single-user environments need not maintain the following files
(123 kbytes):

lbin/who 14 kbytes
/bin/write 13 kbytes
/bin/wall=/etc/wall 13 kbytes
letc/shutdown 17 kbytes
/usr/ucb/whoami 12 kbytes
lusr/ucb/f 22 kbytes
/usr/ucb/finger 22 kbytes
/usr/ucb/users 10 kbytes

Removing unnecessary entries from the terminal database letc/termcap will release some 40 kbytes .5,
of hard disk space.
Systems utilising an editor other than those supplied can release 124 kbytes of hard disk space by
the removal of the following linked files:

/usr/ucb/vi
view
e
edit
ex

Various files and directories expand during the day to day operation of GENIX.
The accounting file /usr/adm/wtmp is a record of who logs onto the system and their log in and log
out times. It is possible for this file to expand to a significant size, and consideration should be given
to its total removal or periodic truncation. For details of system accounting refer to the sa and ac
commands in section 8 of Volume I of the GENIX Programmer’s Manual.

In a multi-user system using the mail facility the file containing users’ mail, lusr/spool/mail, can
expand as mail continues to be deposited and left unread. This can also occur with the secretmail
file /usr/spool/secretmail.

11.4 WCW

Troubleshooting

Systems using the uucp facility include files which can grow unnecessarily large, particularly in
directories usr/spool/uucp and usr/spool/uucppublic. Refer to Volume 2 of the GENIX
Programmer’s Manual for details of administering UUCP related files.
The system uses two directories for temporary files /tmp and /usr/tmp which are cleared each time
the system is started up. If the system remains running for long periods these directories can
become full.
Systems which maintain the on-line manual include the set of directories /usr/man/cat*. The catman
program formats the manual and stores the results in these directories. Alternatively, the direc—
tories fill up when manual entries are requested with the man command — but only if the cat
directories exist. If therefore the ready formatted versions are not required remove the cat direc-
tones.
Many of these facilities, while not in use regularly can be useful over the long term life of the
system. Accordingly, it is recommended that they be archived onto a separate storage system
rather than being deleted completely.

11.5. Runaway Processes.

Very occasionally, either human or mechanical error causes a “runaway process” which resists
interrupt or halt commands, and may produce an unwanted stream of output to the terminal. In the
event of a runaway process carry out the following actions in sequence, until the process is halted:

1. Try pressing the <DELETE> key.
2. Try pressing the <Ctrl><\> sequence.
3. To completely reset the MG-l, type the keys in the four corners of the keyboard:

<Esc><Alt><Scroll Lock><+>. This is an extreme measure and should only be used in
the most severe circumstances. Damage to the file system is a distinct possibility when
resetting the MGnl. To minimise this pOSsibility, listen carefully to the hard disk drive (top
centre of computer unit) and wait for ten seconds after a period of disk searching before
switching off the mains power.
Only reset the MG—l as a last resort: it is not the correct way to shut down the system and can
cause file inconsistencies which will need to be corrected with fsck.

11.6. The Diagnostic Floppy Disk.

The diagnostic floppy disk contains a range of GENIX commands for file and device handling,
system checking, archiving, and maintenance. In the event of the hard disk being immobilised by a
fault, the floppy disk can provide the troubleshooting facilities needed. Bootstrapping from a floppy
disk is described in section 5.4.

WCW 11.5

Appendix A
Physical Specifications.

A. 1. Processor

32-bit processor (NS 32016) with 8 MHZ clock, floating point unit (NS 32081) and memory manage-
ment unit (NS 32082) providing a full demand-paged virtual memory system with 1 kbyte page size.

A.2. Memory

Uses MOS semiconductor DRAM with 270nS cycle time. Dual ported between processor and
display using 64 bits highway. Basic system 0.5 Mbytes, field upgradeable to a maximum of 8
Mbytes in 0.5 Mbyte or 2 Mbyte increments, all within the standard enclosure.

A.3. Display

Bit—mapped display system refreshed from system memory. Display controller uses a paged
memory system compatible with the memory management unit, thus program variables can be used
as screen buffers. Four screen maps are held concurrently in Video Mapping RAM with instantane—
ous switching permitting the use of double buffering techniques for smooth animation. Reverse
video available.

A.4. Raster Graphics Processor

Hardware implemented RasterOp performs full set of logical operations between bit-aligned rec—
tangles (2 dimensional arrays) with programmable rectangle size and stride length. The RasterOp
processor operates on rectangles located anywhere in memory.

A.S. Input/Output
One serial (RS 232 C) port standard up to 9600 bps. General purpose expansion port allowing
direct access to system bus and DMA service from the on-board controller. Accepts a mother
board supporting upto 3 IBM PC compatible expansion boards.

A.6. Local Network
An integral IEEE 802.3 Ethernet controller is an option.

A.7. Fixed Disk System

5.25" Winchester technology fixed disk. Choice of capacities within the processor unit. Average
seek time 50mS, transfer rate 600 kbytes/sec.

A.8. Floppy Disk System

5.25" double—sided, double-density, half-height floppy disk drive, 0.8 Mbyte formatted capacity.

A.9. Keyboard

Free-standing, lightweight solid state keyboard. IBM PC layout with 83 keys including numeric pad
and function keys.

A. 10. Pointing Device

A 3 button mouse is standard interfaced to the main system via a slave processor directly connected
to the cursor.

WCW A.l

Physical Specifications.

A.11. Environmental Requirements .

Noise output: ZSdB Heat output: 150 watts Power requirements: 240 volts AC 13 amp SOHZ single
phase 3 amp fuse.

A.12. Cabling

All connecting cables are supplied.

A.13. Physical Dimensions

Processor Unit: 490mm x 165mm X 465mm.
Screen (front): 440mm X385mm.
Screen (back): 205mmx210mm.
Keyboard: 450mm X 190mm X 30mm.

A. 14. Weight

20Kg total.

A2 WCW

Appendix B
Serial Port Pin Allocations.

The MG~1 supports both an inbuilt serial port and a Persyst ACC—Z two serial asynchronous port
board running through the IBM bus. The pin allocations for the serial port are as follows:

Pin 2
Pin 3
Pin 4
Pin 6
Pin 7
Pin 8
Pin 20

transmit data
receive data
request to send
data set ready
signal ground
carrier detect
data terminal ready

output
input
output
input
(—— ——>

input
output

However, early models of the MG-l have the following slight difference:

Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Pin 7
Pin 20

transmit data
receive data
request to send
carrier detect
data set ready
signal ground
data terminal ready

output
input
output
input
input
(—- —>

output

For complete details of flow control and diagnostics for the serial ports, see the references to
acc(4), tty(4) and newtty(4) in Volume I of the GENIX Programmer’s Manual.

WCW B.1

Appendix C
ASCII Codes.

A full list of the MG-1’s ASCII codes can be found in file /usr/pub/ascii. The following table gives
the octal values of the keyboard characters.

000 nul 024 dc4 050 (074 < 120 P 144 d 170 x
001 soh 025 nak 051) 075 = 121 Q 145 e 171 y
002 stx 026 syn 052 =+= 076 > 122 R 146 f 172 z
003 etx 027 etb 053 + 077 ? 1.23 S 147 g 173 {
004 eot 030 can 054 , 100 @ 124 T 150 h 174 |
005 enq 031 em 055 — 101 A 125 U 151 i 175 }
006 ack 032 sub 056 . 102 B 126 V 152 j 176 ”
007 bel 033 esc 057 / 103 C 127 W 153 k 177 del
010 bs 034 fs 060 0 104 D 130 X 1541 . _
011 ht 035 gs 061 1 105 E 131 Y 155 m
012 ml 036 rs 062 2 106 F 132 Z 156 n
013 vt 037 us 063 3 107 G 133 [157 o
014 np 040 sp 064 4 110 H 134 \ 160 p
015 cr 041 l 065 5 111 I 135] 161 q
016 so 042 " 066 6 112 J 136 ‘ 162 r
017 si 043 # 067 7 113 K 137 _ 163 s
020 dle 044 $ 070 8 114 L 140 ‘ 164 t
021 dc1 O45 °/o 071 9 115 M 141 a 165 u
022 dc2 046 & 072 : 116 N 142 b 166 v
023 dc3 047 ’ 073 ; 117 O 143 c 167 w

WCW C.1

Appendix D
Scan Codes

The following table gives the MG-1’s keyboard scan codes.

Code Unshift Shift Code Unshift Shift Code Unshift Shift

1 Esc 29 Ctrl 57 Space
2 1 ! 30 a A 58 CLock
3 2 @ 31 s S 59 F1
4 3 # 32 d D 60 F2
5 4 $ 33 ‘f F 61 F3
6 5 % 34 g G 62 F4
7 6 “ 35 h H 63 F5
8 7 & 36 j J 64 F6
9 8 * 37 k K 65 F7

10 9 (38 l L 66 F8
11 0) 39 ; : 67 F9
12 — _ 40 ’ _ " 68 F10
13 = + 41 # ‘ 69 NLock
14 Del 42 Shift 70 SLock
15 Tab F Tab B 43 \ | 71 Home 7
16 q Q 44 2 Z 72 Up 8
17 w W 45 x X 73 Pg Up 9
18 e E 46 c C 74 -
19 r R 47 v V 75 Left 4
20 t T 48 b B 76 5
21 y Y 49 n N 77 Right 6
22 u U 50 m M 78 +
23 i l 51 , < 79 End 1
24 o O 52 . > 80 Down 2
25 p P 53 / ? 81 Pg Dn 3
26 [{ 54 Shift 82 Ins 0
27] } 55 * Prt Sc 83 Del
28 CR CR 56 Alt

WCW D.1

Appendix E
Error Codes

The tests provided by the MG—1 System ROM upon power—up are intended to be as simple as
possible; they will identify only those faults that would prevent more sophisticated testing tools
from functioning properly.
Before commencing tests, the ROM will illuminate the indicator for one second, then switch it off.
This shows that the processor unit, ROM and associated tty are working.
Reading the error codes has been explained in section 11.2 of this Guide. The codes translate as
follows:

E.1. Miscellaneous

0 ROM decode error
SRAM error .
IOP not initialised
Video Map error
ICU error
USART error
Processor trap
undefined\l

O
N

U
l-
fi
M

N
b

-I

E.2. DRAM Tests

8,9,A,B Single-bit error
Multi-bit error
unused
Addressing error
Refresh error

C
D
E
F

WCW E.1

Appendix F
Reading List.

F. 1. General.

A wide range of UNIX text books and introductory guides already exists. These are widely avail—
able and are updated and expanded continually. Similarly, there are a large number of good
general computer science references on such topics as interactive graphics, networking and com-
pilers. There would be little point in listing these in detail, especially as most such references
include their own bibliographies. Whitechapel Computer Works is currently engaged in extending
its range of MG—l documentation. Additions will be announced.

F.2. GENIX.
The major reference is

“GENIX Programmer’s Manual”, 2 Vols., (1985), NSC.
This manual is the essential source of information on the components and use of the GENIX
operating system. Volume I covers the GENIX commands and application programs, system calls,
subroutines, special files, file formats, games, and system maintenance routines; Volume II
presents a series of papers explaining the use of these facilities, and is especially useful in its
coverage of the utilities.

F.3. The C Programming Language.

The basic reference on C, also known as the “White Book”, is

“The C Programming Language” by Kernighan,B.W. & Ritchie, D.M., (1978), Prentice
Hall, Inc.

Also recommended are
“The C Primer” by Hancock,L. & Krieger,M., (1982), McGraw Hill.

“C Programming Guide” by Purdam,.l., (1983), Que Corporation.
“Learning to Program in C” by Plum,T. (1983), Plum Hall, Inc.
“The UNIX Programmer’s Manual” by Thompson,K.L. & Ritchie,D.M., (1978), Bell
Laboratories.

FA. The General Programming Environment.

The major MG-1 programming languages such as C, FORTRAN, and Pascal are all amply covered
in general texts or in their own compiler documentation. Assembler routines may be incorporated
within program modules written in any of the above languages. The most useful references for the
GENIX Assembler are the GENIX Programmer’s Manual, and the following NSC publications:

“NS32000 Instruction Set Reference Manual”

“Series 32000 Cross Assembler Reference Manual”

F.5. Hardware.

Many of the relevent references are published by the National Semiconductor Corporation. Each
of the processors introduced in Chapter 3 of this manual is covered in its own technical manual,
which together make up a group of documents called “The 3200 Microprocessor Family”. Also
available through NSC is a series of documents such as “The Benefits of Demand Paged Virtual
Memory”, and “Introduction to the NS32000 Architecture”.

WCW F.1

Access Permissions see Directories, Files, Users
Adding User Accounts see newuser
Animation ...8.16
apropos ... 6.8—6.9
Archiving ... 9.5—9.6, 9.7—9.8
Area Flooding ..8.5
Arguments r .. 6.4—6.5
ASCII Codes C... 1
AWK, .. see Utilities

Background Processes 6.5—6.6, 7.8
Backups ..9.1, 9.7—9.9
BatchRasterOp ... 8.2
Baud Rates ..5.3
BC .. see Utilities
Bootstrapping 5.1—5.2, 11.]
Breakpointing ..3.2
Brush Positions

C ...2.2, 3.8, 7.8-7.9
l/O Library .. 7.8
compiling a program 7.8—7.9
running a program 7.9

CAD see Computer-aided Design
CAE see Computer-aided Engineering
CAM see Computer-aided Manufacturing
case .. 6.7
cat .. 7.3—7.4
cat > ..7.3
cat >> ...7.3
Catenation ...7.3
Cathode Ray Tube see Monitor
cd ..7.3, 7.4, 7.6, 7.7
Character Generation 8.5—8.6, 8.14—8.15
chmod ... 7.7—7.8, 10.4
chsh ... 6.4
Circle Drawing ...8.5
Click-ahead ..8.9
Clipping ..
Clock .. see System Clock
COBOL .. 2.2
Command Groups ... 6.5—6.6
Command Line ..6.4, 7.1
Coordinates ...8.3
Computer-aided design8.1, 8.9, 8.11
Computer-aided engineering 8.1
Computer-aided manufacturing8.1

'cp ..7.2, 7.6, 9.7
cron .. see Daemons
csh ... 6.4
Cursor ..
Curve Generation .. 8.4—8.5
Cut and Paste ..8.8

Daemons
cron ..9.4
lpd ..9.4
update ...9.4

DC ... see Utilities
Demand Paged Memory see Memory
Descenders see Character Generation
Device-independent Graphics Systems8.17
df ...9.4—9.5
Diagnostic LED ..3.1, 11.1
Diagnostics ..5.2, 11.5

WCW

Index

Display ... see Monitor
Directories

access permissions 10.2—10.3
deletion ... see rmdir
home ..6.2
pathways3.8, 6.1—6.2
root ..3.8, 6.2
search path ... 6.4—6.5

Direct Memory Access Controller3.2, 3.6, 3.12
Disk Space9.4-9.5, 11.2—11.5
DMA see Direct Memory Access Controller
Documentation, on-Iine 2.3, 6.8—6.9, 11.2
Double Precision Operations
................................... see Floating Point Operations

du .. 9.4—9.5
dump ..9.8

ED ... see Utilities
Editors see ED, EQN, EX, SED, TBL, VI
Entry Points see System Calls
EQN .. see Utilities
Ethernet ..2.3, 3.1, 3.6, 3.12
EX ... see Utilities
Executable Files .. see Files
Expansion Ports

memory ... 2.2
IBM PC Board2.2, 3.12, 4.3

i77 .. see FORTRAN 77
fdfmt ..9.6
Files

access permissions 10.2-10.4
backups see Backups
catenation see cat, cat >, cat >>
copying ... see cp
deletion .. see rm
dumping .. see dump
executable .. 6.7
protection see Files, access permissions
restoration see flar, restor

File Space ... see File System
File System 3.8—3.9, 6.1—6.4, 11.2—11.5
Filters ...6.6
flar ... 9.7—9.8
Floating Point Operations 3.2—3.5
Floppy Disk Drive3.2, 4.2—4.3
Focusing Coils .. see Monitor
fonted ...8.5
Font Editor .. see fonted
Fonts .. 8.5—8.6
for .. 6.7—6.8
foreach ...6.7
Formatting ..4.2, 9.6
FORTRAN 772.2, 3.8
fprint ..8.6
4.1bsd ... see GENIX
fsck ... see System Integrity

GENIX 2.1—2.2, 3.7—3.8, 6.1—6.9, 7.1—7.9
GArc ..8.4
GAreaFilI ..8.5
GCircle ...8.5
GFontRead ...8.6
GLine ...8.4
GMove ...8.4

1

Index

GPlot ... 8.4
GPoint .. 8.4
GPutC ..8.5
GPutString .. 8.6
Graphics
Graphics Library
Graphics Pipeline .. 8.17
Graphics Text see Character Generation
GREP ... see Utilities
GuestUserseeUsers

Hard Disk System 32 3.12
Help Facilities 8.11 see also Documentation
High Level Languages...see C, COBOL. FORTRAN 77

IBM PC Board see Expansion Ports
IBM PC Bus Adaptor ...4.3
Icons I i
IEEE ...802.3 3.6
ifelse 6.7
Input/Output .. 3.5-3.6, 3.8
[/0 .. see Input/Output
I/O Library .. see C
lnterrupts35

Kernel38 6.1
Keyboard 2.2, 3.6—8.7, 5.3-5.6
Keycodes56

Line Drawing ...8.4
LINT .. see Utilities
Logical Address Space ...3.3

logout ...7.9
lpd see Daemons
lpr ...6.6. 6.7
ls .. 6.7, 7.5,10.2

mail ... 7.9
MAKEsee Utilities
man .. 6.8—6.9
mkfs ... 9.6
Memory

demand paged .. 3.2
linear ... 3.3
main ... 3.3
mapping33
page frames .. 3.3
page swapping 33
pages ... 2.2.3.3
segmented33

VMsee Memory, virtual
Menus 8.9—8. 10
Messages ... 7.9, 9.10
Metacharacters see Special Characters
M4seeUtilities
mkdir ... 7.3, 7.7
Mirror Images .. 8.7
Modelling Techniques 8.15-8.16
Monitor 2.1—2.2, 3.6, 4.1—4.2. 8.1

cathode ray tube 8.1
focusing coils .. 8.1
phosphor 8.1
viewing angle adjusters4.1. 4.2

Monitor ROM Debugger......................................5.2
more .. 7.4
mount.... 96
Mouse
Multiple Imaging ... 8.14
Multiprogramming..3.3

2

Multi-user Environment 9.10
mv .. 7.5—7.6, 9.6—9.7

NEON .. see Utilities
Networking...see Ethernet
NewRaster .. 8.2
newuser ... 9.2—9.3
NROFF ... see Utilities

Object Selection .. 8.12
off ...
ofont .. 8.6
On-line Documentation see Documentation
Operating System see GENIX

Pages see Memory
Painting ... 8.16
Panellisti .. 8 .2, 8.18
Panel Mask .. 8.19.
PanelSetMask ... 8.19
PanelUpdate ... 8.18, 8.19
passwd ..9.2
Passwords 9.2, 9.3, 10.1, 11.1~11.2
path ..6.4-6.5
Pathways see Directories
Phototypesetting see TROFF
Physical Address Space 3.3
Pipelines 56 6.6
Pixels
Plotting 8.3
Point Plotting ... 8.4
Polygon Generation ..8.5
Portability .. see Software
Positional Parameters 6.7, 7.7—7.8
Power-down Routine.....................................5.7, 7.9
Power-on Button .. 3.1
Power—onLED31
Power-up Routine 5.1, 11.1
pr .. 7.7
Precision ...8.3
Primitives
Process Control 6.8, 9.9, 11.5
Processors

central processing unit 3.2
floating point unit 3.2, 3.5
input/output processor3.5—3.6
interrupt processor3.2, 3.5
memory management unit3.2, 3.3.3.10
NS32016 ...see Processors, central processing unit
NS32081 see Processors, floating point unit
NS32082 ..
.........see Processors, memory management unit
NS32201...see Processors, timing and control unit
slave processors 3.2—3.3
timing and control unit 32

Proportional Spacing see Character Generation
ps .. 9.9
PS ... 1 6.4
pwd .. 7.3

quot .. 9.4—9.5

Random Scan 8.1
Rasters ,
Raster Scan
Rasterops, y ,
ReadRasterFontFile ..V8.76
Refreshing
Removing User Accounts see Users
Resolution ... 8.3
restor .. 9.8-9.9

WCW

rfont ... 8.6
rm ..7.6
rmdir .. 7.6—7.7
Root User .. see Users
Rotation8.3, 8.7, 8.13—8.14
RS-232 C 2.3, 3.1-, 3.7
Rubber Banding 8.12—8.13

Scaling8.3, 8.7, 8.13
Scan Conversion8.6—8.7
SCCS .. see Utilities
SCCSHELPsee Utilities
Search Path ‘1 see Directories
Security .. 10.1—10.4
Security Disk9.2, 11.1—11.2
SED .. see Utilities
Segments .. see Memory
Series ... 32000 3.2-3.6
set path ...6.5
set prompt ...6.4
SetPixel ..8.6
sh ..6.4
Shell ...3.7, 6.1, 6.4—6.5

Bourne Shell 6.4
C Shell ..6.4
programming....................................... 6.7—6.8
prompts 6.4, 7.1, 9.2
shell scripts ..6.7, 7.7

Single Precision Operations
................................... see Floating Point Operations

Slave Processors see Processors
Software

administration ...9.10
portability..3.8, 6.1

Solid Area Filling ...85
Solid Area Scan
SORT ... sec Utilities
Special Characters

" ..6.5, 7.6—7.7
? ...6.5
[l ...6.5
/ ..6.1
<> ..6.6, 7 3
l ..6.6
. .. 7.4, 7.5, 7.6—7.7

..................7.4, 7.5, 7.6—7.7, 9.1

& ..6.5, 7.8, 9.2
Specifications A. ... 1
Split Screen ...8.8
stty ..5.3
SubRaster ...8.3
Superuser ... see Users
switch ...6.7
sync ..9.4
System Calls ..3.8
System Clock ...3.2, 5.6
System Integrity5.2, 9.3—9.4
System ROM ..3.5, 11.1

Tape Streamer2.2, 3.2, 3.12
TBL ... see Utilities
Tiling
Tool Library ... 8.18
Transformations ...8.3, 8.7
Translation ... 8.3, 8.7
Traps .. 3.5
TROFF ... see Utilities
Type-ahead ..8.8
Type-in Box ...8.8

VVCVV

Index

umask ... 10.3
umount ...9.7
update .. see Daemons
Users

access permissions 10.2—10.4
group ID .. 10.2

new accounts see newuser
removing accounts
root ...5.1, 10.1
superuser91—93, 10.1

Utilities
AWK ..3.8
BC ...3.8
C .. see C
DC ...38
ED .. 7.4—7.5, 7.7
EQN ...3.8
EX ...3.8
GREP ...3.8, 6.7
LINT ..3.8
MAKE ..3.8, 9.10
M4 ... 3.8
NEON ... 6.6—6.7
NROFF ... 3.8, 6.6
REFER ...3.8, 6.7
SCCS ... 3.8, 9.10
SCCSHELP ..9.10
SED ... 3.8
SORT ...6.6, 6.7
TBL..3.8, 6.6
TROFF ... 3.8
UUCP 11.3, 11.5
VI ...3.8
YACC..3.8

UUCP .. see Utilities

vfont ..8.6
V1 .. see Utilities
Viewing Angle Adjusters see Monitor
Virtual Memory see Memory
VM.. see Memory
VT100 Emulator ... 5.6, 8.19

who ..9.2
Wild Cards see Special Characters
Window Creation ..8.19
Window Manager
Windows

overlapping ..8.9
priority ..8.9
scrolling ...8.9
size control ...8.9
tiling ...8.9

YACC .. see Utilities

