3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

1. Features

64-BIT FLOATING-POINT DATA PATH

64-bit and 32-bit floating-point and 32-bit integer
multiplier

64-bit and 32-bit floating-point and 32-bit integer ALU
64-bit and 32-bit divide/square root unit
Six-port 32-word by 64-bit register file

Six 64-bit internal buses

HIGH PERFORMANCE

100 ns, 75 ns, 60 ns, 50 ns and 40 ns clock cycle
Single-cycle throughput up to 50 MFLOPS
Two-cycle register-to-register latency

Three-cycle memory-to-memory latency

Four-cycle chained operation latency

High 1/0 bandwidth: up to 600 Mbytes/sec

FLEXIBLE I/O CONFIGURATIONS

Three 32-bit buses: 1 input, 1 output, 1 input/output
(3364)

Single 32-bit I/O bus (3164) or single 64-bit I/O bus
(3364)

FULL FUNCTION
Divide and square root operations

Single-cycle pipeline throughput for the following
operations:

Multiply/Add XiRaYi — Zi
XiRa+ Rb — Rc

Concurrent Multiply XiYi — Z and

and Add Operations Ra + Rb — Rc

Sum of products (3364) 2 XiYi

Product of sums (3364) M(Xi + Yi)

Compare, absolute value, format conversion
Integer, logical, shift, and min/max

FULL IEEE COMPLIANCE

Conforms fully, in a pipelined environment, to the JEEE
Standard for Binary Floating-Point Arithmetic

FULLY INTERRUPTIBLE

HIGH INTEGRATION CMOS TECHNOLOGY
WITH TTL /O

COMPATIBLE WITH WEITEK XL-SERIES
PROCESSOR FAMILY

2. Description

The 3164 and 3364 are 64-bit floating-point data path
units designed for high-speed operation in a pipelined
environment, while making possible full compliance
with the [EEE Standard For Binary Floating-Point
Arithmetic(Std 754-1985), as well as full interruptibility
during pipelined register-to-register operations. For the
rest of this document, when a reference is made to a
feature or attribute common to both the 3164 and
3364, they will both be referred to as “3x64.”

The 3x64 is fabricated in CMOS technology; it inte-
grates on a single chip all necessary arithmetic units: the
independently-controlled floating-point multiplier and
ALU; divide/square root unit (DSR); 32-word by 64-bit
six-port register file; extensive status and control logic.
See figure 1.

Unlike previous IEEE-compatible floating-point proces-
sors, the 3x64 makes possible full conformance to the
IEEE Standard For Binary Floating-Point Arithmetic in
a pipelined environment.

The 3x64 has a built-in six-port 32-deep by 64-bits wide
register file. It can be bypassed on loads, stores and dur-
ing register-to-register operations. This saves one cycle
of latency in each case. The register file reduces the
need for external components and increases perform-
ance.

The 3364 has three 32-bit ports: the bidirectional X
port; the Y input port; and the Z output port. It is in-
tended for microprogrammable building-block applica-
tions where both “raw” floating-point performance and
high I/O bandwidth are important. The 3364 may be
used in either a three-32-bit-bus configuration or a sin-
gle-64-bit-bus configuration. It is packaged in a 168-pin
grid array. The 3364 is intended for scientific problem-
solving in vector and array processors, supermini- and
minisupercomputers, and high performance engineering
workstations.

2. Description, continued

The 3164 has a single bidirectional 32-bit bus. It is in-
tended for microprogrammable building-block applica-
tions which are compute-bound and cost-sensitive and
in which high I/O bandwidth is of secondary impor-
tance. The on-chip register file of the 3164 minimizes
I/0 traffic for many applications. The 3164 is packaged
in a 144-pin grid array. It is aimed primarily at numeric
coprocessor and graphics applications.

The 3164 is used with the WEITEK XL-8137 32-bit in-
teger processing unit (IPU) and the XL-8136 32-bit pro-
gram sequencing unit (PSU) to create a fast general-
purpose numeric processor, the XL-8164. The 3364 can
also be used with the IPU and the PSU to create an even
faster processor, the XL-8364, which has a 64-bit data
bus. Full development system support is available for
XL-Series processors, including C and FORTRAN 77
compilers. The 3164 and 3364 are functionally identical
to the 3164 and 3364, respectively, but are used in

modes specific to the XL-Series. Please see appendix A
for more information on the 3x64 parts.

2.1. Functional Simulator

WEITEK offers a functional (pin-level) simulator for
the 3x64. The simulator can aid the user in the under-
standing of the 3x64 and in developing code for it. The
simulator allows the user to specify stimuli to the chip—
input operands, control signals and status register mode
bits—and to examine responses: results and status out-
puts, as well as the contents of register file registers and
status registers.

The simulator was written (in C) to be event-driven; if
needed, it can be linked into the user’s own simulation
environment.

A license agreement is required to purchase the
simulator.

3164/3364 .
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

2. Description, continued

X port Z port Y port
32 32 32
1/0 Control
Y64 Yea Yea WAL
¢ 64 , 64
7 rd
F D I
Register Fil
egister File
D X D Y E A B
K64 ko4 ko ¥64 Ye4)ea —xBd
Buses/Muxes/Etc.
y64 64 X 64 Y64

-/

Multiplier

Divide/
Square
Root

Unit

_//

Figure 1. 3164/3364 conceptual block diagram

3. Architecture

OEZ-

Z+ Y+ X+ OEX- C+
. {42
| "8
ENZ 132
*
LOGIC]
MU
l RE-EXECUTEH
h- 9yt D BUS DECODER -
' 32 ! 42
4'8 4 8 4'8 4 64 C BUS \
LOAD LOAD b l
LOGIC OG! T o4 1 64 '(-_MUX
SRO X L k R
64 14 64 164 94 s
SR1 64 64 g ‘ I o ” T —I
{64 F D c 15
A "
5 WF, WD, WC
O’ 32X64 15
SR10 ~ red B RE] REGISTER FILE e o g fe
SR11 E g
B E A] RA >
U g
BYPASS MUX S . - 4 RB >
[l * 64 t64 t64 ‘ r 164l 64 Re 5
[BYPASS MUX fe ®
-
A BUS S t64 t-s: WD ﬁ 42
B BUS wce —e 84 4 a2
X BUS WF ‘§<
v BUS - - —
y - y 4 4 - f
oke , LEBUS 1 64164‘ 64 | 54 164 Tos {64 1 e4te4‘64‘ 64 o
OD— ' ¥y Y Y v 9
AY Xls v|la x|l v 7T CODE REG
MUX MUX MUX MUX "
NV 6 64 64 142
64 4
FPONY EQ, LT, GT, UNORD DENM ‘ \
< |<+— - MAIN MBIN AAIN ABIN
FPCN LOGIC 64 MUL - STAGE 1 ALU - STAGE 1
i " 4 |
b PIPE | PIPE |
DIVCLIG 4 DIVIDE/ l l
| —~ SQUARE - _
QUAR MUL - STAGE 2 ALU - STAGE 2
I_ D PIPE 1D PIPE |
FPEX 1 [¥) NOP NOP
(:]._,4_ FPEX LOGIC e 3 |_ CURRENT NEXT
8'11/; MUL ~ STAGE 3 ALU ~ STAGE 3
VDD INX
[5 o For oous
D BUS
GND 8
STATUS/
COND NaN
INV 1 1 1
. . f . DNBM
* This path exists only when the 3364 is used in Bylg
single-64-bit-1/0-bus mode. UNF
OvE
83 ¢ NEUT- ABORT- STALL-

Figure 2. 3364 block diagram

3. Architecture, continued

3164/3364

64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

X+

OEX-

. 138
"8
MU
o
q D BUS -
4 32 by 4 38
18 LOADI oa0 118 I# RS
A b 4 |
) LOGIC OGIC ; 64 164 _’|MUX
SRO L
e foo fo R . '
SR1 64 g
{64 A F D c 15 b:‘j
B WF, WD, WC [*+*
o 32X64 15
SR10 v reG | Px reG R REGISTER FLE g RA, RB =
SR11 E 5
B E A B RA >
g
8 [BYPASS MUX] s t t ‘ . ALl RB -
64 64 64 & £ | 4
4| 64 5
! v 1 t RE je-4—=
£ BUS I BYPASS MUX | ®
64 P 4
A BUS 4 *64 1 64 WD i 38
B BUS wce —¢ {1 {3
X BU% W feid
v BUS - - —
o ' r r 4 / 4
Okt 164164164 {64 i64 164 464] 64t64 b4l 64 8
D Y Yy ¢ y 9 ¥y |
AY Xls ¥ A x|lB Y T, T, CODE REG
N MUX MUX MUX MUX C
N 138
FPONs EQ, LT, GT, UNORD 1NV i ‘sa t“ ,‘64 ‘
DVZ
< |——-— MAIN MBIN AAIN ABIN
FPCN LOGIC 64 MUL - STAGE 1 ALU - STAGE 1
il | |
D PIPE |) PIPE 1
DIVELIE 4 DIVIDE / l l
I > - SQUARE _ _
QUAR MUL - STAGE 2 ALU - STAGE 2 I
FPEX] F"f’E) PIPE H NOP NOP
1 p——— ‘ [] ‘ CURRENT NEXT
CI ovE MUL - STAGE 3 ALU - STAGE3 [
VDD INX
[~ . oo
D BUS
GND 8
STATUS/
conp | NaN ;) ,
DNRM
DVZ
OVF
UNF
INX
IOVE
S3..0 NEUT- ABORT- STALL-

Figure 3. 3164 block diagram

4. Signal Description

Signals marked with a minus sign (-) after their names
are active low. All other signals are active high.

X PORT INPUT/OUTPUT

The 32-bit X31..0 port is a bidirectional data bus. In sin-
gle-pump mode, input data is sampled on the rising
edges of CLK; in double-pump mode it is sampled on
both the rising and falling edges of CLK. In single-pump
mode, output data is available after the rising edge of
CLK; in double-pump mode, 32-bit halves of a 64-bit
word are available after both the rising and falling edges
of CLK.

Data transfers are controlled by the XCNT field of the
code word, C7..4; a nop (0000) in this field causes the
device to ignore the X port input and tri-states the out-
put. Single- or double-pump mode is controlled by the
I/0 mode field in the status register, SR14..0. Status and
code registers are also loaded and stored through the X
port. The X port may be set to a high-impedance state,
independently of all other controls, by the asynchronous
OEX- signal.

Y PORT INPUT

The 32-bit Y31..0 port is a data input bus. It is available
only on the 3364. In single-pump mode, input data is
sampled on the rising edges of CLK; in double-pump
mode on both the rising and falling edges of CLK. Single-
or double-pump mode is controlled by the I/O mode
field in the status register, SR14..0. Data transfers are
controlled by the YCNT field of the code word, Csa..2; a
nop (00) in this field causes the device to ignore the Y
port input, except when in 64-bit I/O mode.

Z PORT OUTPUT

The 32-bit Z31..0 port is a data output bus. It is available
only on the 3364. In single-pump mode, output data is
available after the rising edge of CLK; in double-pump
mode, 32-bit halves of a 64-bit word are available after
both the rising and falling edges of CLK. Single- or dou-
ble-pump mode is controlled by the I/O mode field in
the status register, SR14..0. Data transfers are controlled
by the ZCNT field of the code word, C1..0; a nop (00) in
the ZCNT field tri-states the Z port, except when in
64-bit I/0O mode. Stores of status and code registers are
driven to the Z port as well. The Z port may be set to a

high-impedance state, independently of all other con-
trols, by the asynchronous OEZ- signal.

C PORT INPUT

The Cas1..0 port is used as a code input bus. Instructions
are latched on the rising edge of CLK. The 3364 has a
42-bit code port, Ca1..0; the 3164 has a 38-bit code port
Cs1..4. The structure of the code word is diagrammed in
figure 4 and repeated in figure 95. The mnemonics
used in this diagram are explained in section 17.1. The
code word consists of the I/O portion (Ci2..0) and the
operation portion (Ca41..13), which are independent.
Note that everything that needs to be known about a
register-to-register operation can be specified at once in
the operation portion of the instruction, at the time the
instruction is issued.

OEX- INPUT

X port output enable input. OEX-, when high,
asynchronously places the X port output in a high-im-
pedance state. When low, the X port output enable is
controlled by the XCNT field of the code word.

OEZ- INPUT

Z port output enable input. OEZ-, when high,
asynchronously places the Z port in a high-impedance
state. When low, the Z port output enable is controlled
by the ZCNT field of the code word.

NEUT- INPUT

Neutralize input. Cancels the effect of the current in-
struction. Typically used for delayed branches and in-
terrupts. Sampled on the rising edge of the cycle.

STALL- INPUT

Stall input. Cancels the effect of the next instruction.
Typically used as a “not ready” line from the code mem-
ory. Sampled on the rising edge of the cycle.

ABORT- INPUT

Abort input. Cancels the effect of the current and next
instructions. Typically used as a “not ready” line from
the data store. Sampled on the rising edge of the cycle.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

4. Signal Description, continued

FPEX OUTPUT

Floating-point exception output. FPEX signals the occur-
rence of an enabled exception. Whenever an enabled
exception occurs, the FPEX output is asserted, and the
FPEX TAKEN bit in the status register, SR117, is set. This
bit stays set until explicitly cleared. Clearing it is the only
way to reset the FPEX output, when in sticky mode (see
below). FPEX has two modes associated with it: delayed/
undelayed and sticky/pulsed.

FPEX delay is controlled by a mode bit in the status reg-
ister, SR1s. In undelayed mode, whenever an enabled
exception occurs, FPEX is asserted at the end of the cy-
cle in which the exception has occurred. In delayed
mode, FPEX is asserted in the beginning of the cycle fol-
lowing the one in which the exception has occurred. The
delayed FPEX mode eases system timing constraints.

FPEX sticky/pulsed mode is controlled by another status
register mode bit, SR0Os. In sticky mode, whenever FPEX
is asserted as a result of an enabled exception, it stays
asserted until the FPEX TAKEN bit in the status register is
explicitly cleared. In pulsed mode, FPEX stays asserted
for one cycle only. It returns to de-asserted state in the
beginning of the following cycle. In addition, when
FPEX is in sticky mode, it has negative polarity (active
low); when in pulsed mode, it has positive polarity (ac-
tive high).

FPCN OUTPUT

Floating-point condition output. FPCN is asserted if the
condition specified in a compare instruction is true. It is

asserted on the cycle following the occurrence of the
condition and will maintain state until changed by the
result of the subsequent compare instruction.

S OUTPUT

Sa..0 is a four-bit status output. It provides encoded and
prioritized status of multiplier, ALU and divide/square
root operations. See section 11.

CLK INPUT

Clock input.

DIVCLK INPUT

Divide clock input. DIVCLK is used by the divide/square
root unit. DIVCLK frequency can be the same as, or
twice the CLK frequency. Divide and square root opera-
tions complete faster when DIVCLK frequency is twice
the CLK frequency.

vCcCe

All VCC pins must be connected to the 5.0 V power
supply.

GND

All ground pins must be connected to system ground.

5 1111 5 5 5 5 5 4 2 2 Field Width
alalmim vy | z
Fune [2B[4]8] AapD BADD CADD DADD EFADD | XoNT | G | G | Field Name
N[N|N NN
41 37 36 35 34 33 32 28 27 2322 1817 1312 87 43 21 0 Bit#
WTL 3364
Only
Arithmetic/Logical Load/Store
Operations Operations
I N

Figure 4. Code word format

0, ——

5. Input/Qutput

The 3x64 provides a flexible interface for a variety of 5.1. I/OQ Configurations

memory systems. The flexibility stems from the user’s
ability to select one of three I/O configurations in con- There are three ba51.c 1/0 configurations: configurations
junction with several load/store alternatives. The avail- A+ B, and C (see figure 5).

able I/O configurations will be discussed first, followed

by a discussion of load/store modes.

32 32

X [>
< [—

Configuration A. Three 32-bit ports 3364

) 43
Configuration B. Single 64-bit I/0 bus ‘ 432 {32
X Y Z
3364

Configuration C. Single 32-bit I/0 port
3164

Figure 5. 1/0 configurations

5.1. I/O Configurations, continued

CONFIGURATION A

The 3364 used in this configuration has three 32-bit
ports: one bidirectional port, X; one input port, Y; and
one output port, Z. This configuration is applicable only
to the 3364 and is used to maximize I/O bandwidth and
throughput in vector processing applications.

CONFIGURATION B

The 3364 used in this configuration has a single 64-bit
bidirectional port. This configuration is applicable only
to the 3364; it may be used in coprocessor applications.
To use the 3364 in Configuration B, the X, Y, and Z
ports must be connected as shown in figure 5; and the
YCNT and ZCNT fields must be set to zero. Then the
XCNT field specifies load/store operations, as shown in
figure 9.

CONFIGURATION C

This configuration is applicable only to the the 3164: it
has a single 32-bit bidirectional port, X. The 3164 is
typically used in compute-bound coprocessor applica-
tions.

5.2. Single-Pumping and Double-Pumping

Each of the ports is capable of transferring 32-bit data in
either one of two modes: single- or double-pump. In sin-
gle-pump mode, a 32-bit data word is transferred on the
rising edge of CLK. If greater I/O bandwidth is needed
than is achievable in single-pump mode, double-pump
mode may be used. In double-pump mode, two 32-bit
data words are transferred on each CLK cycle: one on
each edge of the clock.

Single- or double-pump mode is selected, along with
other specifications for load and store operations, via a
5-bit field in the status register, SR14..0. These controls
are discussed in section 5.5. Note that single-pump
mode on loads implies single-pump mode on stores;
likewise, double-pump mode on loads implies double-
pump mode on stores. In configurations A and C, both

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

single- and double-pump modes are supported. In Con-
figuration B, only single-pumping is supported.
3.3. Data Types

When performing I/O operations, the user must distin-
guish integers from other data types.

The following four data types are supported for all I/O
operations:

O 32-bit floating-point, conforms to the IEEE standard
O 64-bit floating-point, conforms to the IEEE standard
O 32-bit two’s complement integer

O 64-bit logical

More information on data types is found in section 6.1.

5.4. 1/0 Ports

X PORT

The 32-bit X port is the only bidirectional data bus in the
device. As such, this port is used in both the 3164 and in
3364. Data transfers through this port are controlled by
the 4-bit XCNT field in the code word, Cr..4, and, in
some operations, by the function select fields: FUNC,
MAIN, MBIN, AAIN, ABIN, and BADD.

Loads through the X port may be routed to several desti-
nations:

O The X register
O The Y register

O To a register in the register file (address specified by
the EFADD field of the code word)

O To both the register file and to the A bus or B bus
(through bypassing). Register file bypassing is dis-
cussed in section 6.5.

O To the status register (one byte at a time)

O To the code register (one byte at a time)

5.4. 1/0 Ports, continued

When data is loaded into the X or Y registers it is auto-
matically available on the X or Y bus, respectively, as an
operand. The X and Y registers are static in that their
values do not change unless explicitly loaded with new
values. It is possible to load the X or Y register once and
then re-use the loaded data as an operand in subsequent
instructions.

Stores to the X port can come from the following
sources:

O The register file (address specified by the EFADD field
of the code word)

O The result of an ALU operation

O The result of a multiplier or a DSR operation
O The status register (one byte at a time)

© The code register (one byte at a time)

Storing a multiplier or ALU result involves register file
bypassing which is discussed more fully in section 6.5.1.

Y PORT

The 32-bit Y port is a data input bus. It is available only
on the 3364. Loads through the Y port are controlled by
the YCNT field of the code word, Ca..2, or when the de-
vice is used in Configuration B, by the XCNT field.

10

Loads through the Y port can be routed to one of three
destinations:

O The Y register
O The X register (Configuration B only)

O The register file (Configuration B only. Address is
specified by the EFADD field of the code word)

When data is loaded into the Y register, it is automati-
cally available on the Y bus as an operand.
Z PORT

The 32-bit Z port is the data output bus. It is available
only on the 3364. Stores to the Z port are controlled
through the ZCNT field of the code word, Ci1..0, and, in
some operations, by the function select fields: FUNC,
MAIN, MBIN, AAIN, ABIN, and BADD.

Sources of stores to the Z port are identical to those for
the X port, when the X port is used as an output:

O The register file (address specified by the EFADD field
of the code word)

O The result of an ALU operation
O The result of a multiplier or a DSR operation
O The status register (one byte at a time)

O The code register (one byte at a time)

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
5.5. Load/Store Operations and Their Control

Figures 7-11 explain load and store operations for each three configurations. Figure 6 explains mnemonics used
configuration, in both single- and double-pump modes, in these figures.
as appropriate. Figure 12 provides a summary for all

XR X register

YR Y register

ER Register in the register file, addressed by the EFADD field of the code word. This is the
register that is stored through the E read port of the register file.

FR Register in the register file, addressed by the EFADD field of the code word. This is the
register that is loaded through the F write port of the register file.

LS Least-significant half of a register

MS Most-significant half of a register. Used for most-significant half of a double-precision

floating-point number or for single-precision floating-point number.

INT Integer data type

. (comma) Separates two operations taking place at one I/0 port on two successive clock edges as a
result of one code word, when double-pump mode is used.

; (semicolon) In configuration B, separates simultaneous loads through the X and Y ports or
simultaneous stores through the X and Z ports.

/ (slash) Separates operations involving two registers taking place simultaneously; for example, it
is possible to simultaneously load the same data into two registers: the X register and a
register in the register file, addressed by the EFADD field of the code word.

Figure 6. Load/store mnemonics

11

5.5. Load/Store Operations and Their Control, continued

Control Configuration A
Field Three 32-bit buses, single-pump
1/O operation Comments
XCNT
0 0000 NOP Ignore X port input and tri-state its output
1 0001 ER LS — X PORT Store LS of ER register
2 0010 ER MS — X PORT Store MS of ER register
3 0011 ER INT — X PORT Store an integer from ER register
4 0100 X PORT — YRLS Load LS of the Y Register
5 0101 X PORT — XR/FR LS Load LS of both the X Register and FR register
6 0110 X PORT — XR/FR MS Load MS of both the X Register and FR register
7 0111 X PORT — XR/FR INT Load an integer into both the X Register and FR register
8 1000 X PORT — YR MS Load MS of the Y Register
9 1001 X PORT — FR LS Load LS of FR register
10 1010 X PORT — FR MS Load MS of FR register
11 1011 X PORT — FR INT Load an integer into FR register
12 1100 X PORT — YRINT Load an integer into the Y Register
13 1101 X PORT — XR LS Load LS of the X Register
14 1110 X PORT — XR MS Load MS of the X Register
15 1111 X PORT — XR INT Load an integer into the X Register
YCNT
0 00 NOP Ignore Y port input
1 01 Y PORT — YR LS Load LS of the Y Register
2 10 Y PORT — YR MS Load MS of the Y Register
3 11 Y PORT — YR INT Load an integer into the Y Register
ZCNT
0 00 NOP Tri-state Z port
1 01 ERLS -— Z PORT Store LS of ER register
2 10 ER MS — Z PORT Store MS of ER register
3 11 ER INT — Z PORT Store an integer from ER register
Figure 7. Load/store operations and their control for Configuration A

12

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

5.5. Load/Store Operations and Their Control, continued

Control Configuration A
Field Three 32-bit buses, double-pump
I/0 operation Comments

XCNT
0 0000 NOP Ignore X port input and tri-state its output
1 0001 ER LS, MS — X PORT Store LS and MS of ER register
2 0010 | ER MS, MS — X PORT Store MS of ER register
3 0011 ER INT, INT— X PORT Store an integer from ER register
4 0100 | X PORT — YR LS, MS Load both halves of the Y Register
5 0101 X PORT — XR/FR LS, MS Load both halves of both the X Register and FR register
6 0110 | X PORT — XR/FR NOP, MS Load MS of both the X Register and FR register
7 0111 X PORT — XR/FR INT, NOP* Load an integer into both the X Register and FR register
8 1000 | X PORT — YR NOP, MS Load MS of the Y Register
9 1001 X PORT - FR LS, MS Load both halves of FR register
10 1010 | X PORT — FR NOP, MS Load MS of FR a register
11 1011 X PORT — FR INT, NOP* Load an integer into FR register
12 1100 X PORT — YR INT, NOP* Load an integer into the Y Register
13 1101 X PORT — XR LS, MS Load both halves of the X Register
14 1110 | X PORT — XR NOP, MS Load MS of the X Register
15 1111 X PORT — XR INT, NOP* Load an integer into the X Register

YCNT
0 00 NOP Ignore Y port input
1 01 Y PORT =+ YR LS, MS Load both halves of the Y Register

10 Y PORT — YR NOP, MS Load MS of the Y Register

3 11 Y PORT — YR INT, NOP Load an integer into the Y Register

ZCNT
0 00 NOP Tri-state Z port
1 01 ER LS, MS — Z PORT Store both halves of ER register
2 10 ER MS, MS — Z PORT Store MS of ER register
3 11 ER INT, INT— Z PORT Store an integer from ER register

* Integers must always be loaded on the rising edge of the clock. This table assumes
undelayed load mode. In delayed load mode, the entries in the /O operation column should
read “NOP, INT".

Figure 8. Load/store operations and their control for Configuration A

13

5.5. Load/Store Operations and Their Control, continued

Control Configuration B
Field Single 64-bit 1/0 bus, single-pump only
1/0 operation Comments
XCNT
0 0000 | NOP Ignore inputs and tri-state outputs
1 0001 ERLS; MS — X PORT; Z PORT Store both halves of ER register
2 0010 | ER MS; MS — X PORT; Z PORT Store MS of ER register to X and Z ports
3 0011 ER INT; INT — X PORT; Z PORT Store an integer from ER register to both X and Z ports
4 0100 X PORT — YRLS; Y PORT —+ YR MS Load LS of the Y Register from X port, MS of the
Y Register from Y port
5 0101 X PORT—XR/FR LS: Y PORT — XR/FR MS| Load LS of the X Register and FR register from X port,
Load MS of the X Register and FR register from Y port
6 0110 Y PORT — XR/FR MS Load MS of the X Register and FR register from Y port
7 0111 X PORT — XR/FR INT Load an integer from X port into the X Register and FR
register
8 1000 Y PORT —+ YR MS Load MS of the Y Register from Y port
] 1001 X PORT — FR LS; Y PORT— FR MS Load LS of FR register from X port, MS from Y port
10 1010 Y PORT ~—+ FR MS Load MS of FR register from Y port
11 1011 X PORT — FR INT Load an integer into FR register from X port
12 1100 X PORT — YR INT Load an integer into the Y Register from X port
13 1101 X PORT — XR LS; Y PORT —+ XR MS Load LS of the X Register from X port, MS from Y port
14 1110 Y PORT — XR MS Load MS of the X Register from Y port
15 1111 X PORT — XR INT Load an integer into the X Register from X port
YCNT
0 00 Must be set to zero
ZCNT
0 00 Must be set to zero

Figure 9. Load/store operations and their control for Configuration B

14

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

5.5. Load/Store Operations and Their Control, continued

Control Configuration C
Field Single 32-bit I/0 bus, single-pump
1/O operation Comments
XCNT
0 0000 NOP Ignore X port input and tri-state its output
1 0001 ER LS — X PORT Store LS of ER register
2 0010 ER MS — X PORT Store MS of ER register
3 0011 ER INT — X PORT Store an integer from ER register
4 0100 X PORT — YR LS Load LS of the Y Register
5 0101 X PORT — XR/FR LS Load LS of both the X Register and FR register
6 0110 X PORT — XR/FR MS Load MS of both the X Register and FR register
7 0111 X PORT — XR/FR INT Load an integer into both the X Register and FR register
8 1000 X PORT — YR MS Load MS of the Y Register
9 1001 X PORT — FR LS Load LS of FR register
10 1010 X PORT — FR MS Load MS of FR register
11 1011 X PORT — FR INT Load an integer into FR register
12 1100 X PORT — YR INT Load an integer into the Y Register
13 1101 X PORT — XR LS Load LS of the X Register
14 1110 X PORT — XR MS Load MS of the X Register
15 1111 X PORT — XR INT Load an integer into the X register

Figure 10. Load/store operations and their control for Configuration C

15

5.5. Load/Store Operations and Their Control, continued

Control Configuration C
Field Single 32-bit I/0 bus, double-pump
I/O operation Comments
XCNT
0 0000 NOP Ignore X port input and tri-state its output
1 0001 ER LS, MS — X PORT Store LS and MS of ER register
2 0010 ER MS, MS — X PORT Store MS of ER register
3 0011 ER INT, INT— X PORT Store an integer from ER register
4 0100 X PORT —# YR LS, MS Load both halves of the Y Register
5 0101 X PORT — XR/FR LS, MS Load both halves of both the X Register and FR register
6 | 0110 | X PORT — XR/FR NOP, MS Load MS of both the X Register and FR register
7 0111 X PORT — XR/FR INT, NOP* Load an integer into both the X Register and FR register
8 1000 X PORT — YR NOP, MS Load MS of the Y Register
9 1001 X PORT — FR LS, MS Load both halves of FR register
10 | 1010 | X PORT — FR NOP, MS Load MS of FR a register
11 1011 X PORT — FR INT, NOP* Load an integer into FR register
12 1100 X PORT ~ YR INT, NOP* Load an integer into the Y Register
13 | 1101 X PORT — XR LS, MS Load both halves of the X Register
14 | 1110 | X PORT — XR NOP, MS Load MS of the X Register
15 | 1111 X PORT — XR INT, NOP* Load an integer into the X Register
* Integers must always be loaded on the rising edge of the clock. This table assumes
undelayed load mode. In delayed load mode, the entries in the I/O operation column should
read “NOP, INT".

Figure 11. Load/store operations and their control for Configuration C

16

5.5. Load/Store Operations and Their Control, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

Control Configurations A and C Configuration B
Field Three 32-bit ports (WTL 3364) Single 64-bit 1/0 port{ 3364)
and single 32-bit I/O port (WTL 3164)
Single-pump Double-pump Single-pump only

XCNT
0 0000 NOP NOP NOP
1 0001 ERLS — X PORT ERLS, MS — X PORT ERLS; MS — X PORT; Z PORT
2 0010 ER MS — X PORT ER MS, MS — X PORT ER MS; MS — X PORT; Z PORT
3 0011 ER INT — X PORT ER INT, INT— X PORT ER INT; INT — X PORT; Z PORT
4 0100 X PORT — YRLS X PORT — YR LS, MS X PORT — YRLS; Y PORT —+ YR MS
5 0101 X PORT — XR/FR LS X PORT — XR/FR LS, MS X PORT—XR/FR LS; Y PORT — XR/FR MS
6 0110 X PORT — XR/FR MS X PORT — XR/FR NOP, MS Y PORT — XR/FR MS
7 0111 X PORT — XR/FR INT X PORT — XR/FR INT, NOP* X PORT — XR/FR INT
8 1000 X PORT — YR MS X PORT — YR NOP, MS Y PORT — YR MS
9 1001 X PORT — FR LS X PORT —+ FR LS, MS X PORT — FR LS; Y PORT— FR MS
10 1010 X PORT — FR MS X PORT — FR NOP, MS Y PORT — FR MS
11 1011 X PORT — FRINT X PORT — FR INT, NOP* X PORT — FR INT
12 1100 X PORT — YR INT X PORT — YR INT, NOP* X PORT — YR INT
13 1101 X PORT — XR LS X PORT —+ XR LS, MS X PORT — XR LS; Y PORT — XR MS
14 1110 X PORT — XR MS X PORT — XR NOP, MS Y PORT — XR MS
15 1111 X PORT — XR INT X PORT — XR INT, NOP* X PORT — XR INT

YCNT
0 00 NOP NOP Must be set to zero
1 0t Y PORT = YR LS Y PORT —* YR LS, MS
2 10 Y PORT — YR MS Y PORT — YR NOP, MS
3 11 Y PORT — YR INT Y PORT —+ YR INT, NOP

ZCNT
0 00 NOP NOP Must be set to zero
1 01 ERLS — Z PORT ER LS, MS — Z PORT
2 10 ER MS — Z PORT ER MS, MS — Z PORT
3 11 ER INT —+ Z PORT ER INT, INT = Z PORT

* Integers must always be loaded on the rising edge of the clock. This table assumes
undelayed load mode. In delayed load mode, the entries in the 1/0 operation column should

read “NOP, INT".

Figure 12. Summary of load/store operations and their control

17

5.5. Load/Store Operations and Their Control, continued

5.5.1. LOAD/STORE MODE CONTROL

The 3x64 has been designed for flexible memory inter- status register. The allowable load/store modes are listed
face in a variety of system configurations. Both load and below, followed by a timing diagram of each mode.
store modes are selected through the SR14..0 field in the

SR14..0
Decimal Binary Load Mode Store Mode Comment
0 00000 SP-U SP-U Single-pump undelayed load and store
2 00010 SP-U/CB SP-U/CB Single-pump undelayed load and store,
Configuration B
4 00100 SP-D SP-U Single-pump delayed load and single-pump
undelayed store
6 00110 SP-D/CB SP-U/CB Single-pump delayed load and single-pump
undelayed store, Configuration B
8 01000 SP-U SP-DD Single-pump undelayed load and single-pump
delayed-data store
9 01001 DP-U DP-DD Double-pump undelayed load and double-
pump delayed-data store
10 01010 SP-U/CB SP-DD/CB Single-pump undelayed load and single-pump
delayed-data store, Configuration B
12 01100 SP-D SP-DD Single-pump delayed load and single-pump
delayed-data store
13 01101 DP-D DP-DD Double-pump delayed load and double-pump
delayed-data store
14 01110 SP-D/CB SP-DD/CB Single-pump delayed load and single-pump
delayed-data store, Configuration B
16 10000 SP-U SP-DS Single-pump undelayed load and single-pump
delayed store
18 10010 SP-U/CB SP-DS/CB Single-pump undelayed load and single-pump
delayed store, Configuration B
20 10100 SP-D SP-DS Single-pump delayed load and single-pump
delayed store
22 10110 SP-D/CB SP-DS/CB Single-pump delayed load and single-pump
delayed store, Configuration B
The codes that are not listed are reserved and must not be used.

Figure 13. Load and store modes

18

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

5.5. Load/Store Operations and Their Control, continued

5.5.2. NOTES ON LOAD/STORE TIMING DIAGRAMS

Figures 14 through 32 contain timing diagrams for each
load and store mode. By examining the figures, the
reader will gain sufficient understanding to be able to
create similar diagrams under different assumptions.
The assumptions and notation used in these figures are
listed below.

O Two-cycle-latency mode is used (SR0O7 = 0). This
mode is explained in sections 7.3 and 12.3.

O

Bypassing is enabled (SR1s = 1). Bypassing is ex-
plained in sections 6.5 and 12.3.

Two sequential operations are shown in either the
multiplier or ALU, identified as OP1 and OP2. They
are shown to demonstrate how to load operands for
immediate use by the multiplier or ALU and how to
store results immediately after they are available at
the output of the multiplier or ALU.

Operations OP1 and OP2 are dyadic, of the form

X1 OP1 Y1 — Rt
X2 OP2 Y2 — R2

where the values X1 and X2 come from the X register
and values Y1 and Y2 from the Y register.

Both the operands (X1, Y1) for OP1 and (X2, Y2) for
OP2 — as well as the results R1 and R2 — are double-
precision. The least-significant half of the operands
and the results is labeled LS; the most-significant half
MS. The double-precision data type was chosen as it
is the most complex one, and because operations with
other data types can be understood and derived from
1t.

Single-precision floating-point data type is handled iden-
tically with the most-significant half of the double-preci-
sion data type. Integer data must always be clocked on
the rising edge of CLK. Refer to the corresponding dou-
ble-precision figure; the timing for the integer data type
corresponds to whatever half (LS or MS) of the double-
precision word is aligned with the rising edge of the
clock. Logical data is handled exactly the same as dou-
ble-precision floating-point.

Register file writes are shown for completeness. They are
shown on the loads to demonstrate the earliest time that
the result of the operation on loaded operands can be
written into the register file. On stores, they are shown to
demonstrate when the result of an operation is written
into the register file and may be bypassed to the output
for the store operation. The registers being written are

19

identified as RN, where N may range from 0 to 31. This
notation is also used to identify the result being stored at
the outputs.

The code bus is shown split into two parts. The first one,
Ci12..0, consists of the EFADD, XCNT, YCNT, and ZCNT
fields (see figures 7-12), and controls I/O (load/store)
operations. The second one, Ca41..13, consists of the
FUNC, AAIN, ABIN, MAIN, MBIN, and the AADD, BADD,
CADD, DADD register file addresses, and specifies the
operation itself. See figure 4. It can be seen from the
timing diagrams that these two parts of the code bus are
independent: the loading of the operands and/or storing
of the results need not be a part of the same code word
that specifies the operation which uses these operands
and/or produces the results. The operands may be
loaded well in advance, and the results can be stored
well after the operation.

5.5.3. LOAD MODES

From a timing standpoint, four load modes are possible.
None of them affects the operation’s latency. Figure 14
provides a conceptual comparison among them. Figures
15-24 describe each mode under assumptions listed in
the previous section.

SINGLE-PUMP UNDELAYED LOAD
(FIGURES 15-17)

In single-pump undelayed load, the load and the opera-
tion portions of the instruction can be specified in the
same code word. This code word and the corresponding
data are clocked into their respective inputs simultane-
ously. The specified operation begins execution in the
same cycle in which it was clocked in.

SINGLE-PUMP DELAYED LOAD
(FIGURES 18-20)

Delayed load means that the actual loading of data is
delayed relative to the clocking-in of the load instruction
on Ci2..0 inputs. Since stage 1 begins execution in the
same cycle in which the operation portion of the instruc-
tion is clocked in, and since both double-precision oper-
ands are necessary for the operation to take place, the
operation portion of the instruction may be clocked in
on the same clock edge that loads the second half of the
double-precision operands.

Note that in Configuration B (single 64-bit I/O port),
only single-pump mode is supported.

3.5. Load/Store Operations and Their Control, continued

DOUBLE-PUMP UNDELAYED LOAD
(FIGURES 21-22)

The double-pump mode is similar to its single-pump
counterpart in that the load and the operation portions
of the instruction can be loaded on the same rising clock
edge. The first halves (LS) of data operands are also
loaded on this rising edge. The difference between the
two modes is that the second halves of the data operands
(MS) are loaded on the falling edge of the same cycle.
Because both double-precision operands are available in
the second half of the cycle in which they are loaded,
the arithmetic units (stage 1) can begin execution on the
same cycle when the operands are loaded thus reducing
the total latency by one cycle. This load mode facilitates
single-cycle throughput in double-precision vector op-
erations.

This mode may not be used with undelayed FPEX.

DOUBLE-PUMP DELAYED LOAD
(FIGURES 23-24)

The double-pump delayed load is similar to its single-
pump counterpart in that the loading of the operands is
delayed relative to the clocking-in of the load portion of
the instruction on Cs2..0 inputs. However, in the double-
pump mode the delay is shorter. When the load instruc-
tion is clocked in on the rising edge of cycle 1, the first
halves (LS) of the double-precision operands are loaded
on the falling edge of cycle 1, and the second halves
(MS) on the rising edge of cycle 2. Thus both operands
are available in cycle 2, and the operation portion of the
instruction can be clocked in on the rising edge of clock
2. This mode, like the double-pump undelayed load, fa-
cilitates single-cycle throughput in vector operations.

EFFECTS OF NEUT-, STALL-, ABORT- ON
LOAD OPERATIONS

A NEUT- or ABORT- stops delayed loads but cannot
stop an undelayed load that was clocked in on the cur-
rent cycle, because the data has already been written
into the register file or the X or Y register. STALL-, how-
ever, eliminates the effect of a load in any mode.

5.5.4. STORE MODES

From a timing standpoint, four store modes are possible.
Figure 25 provides a conceptual comparison among

20

them. Figures 26-32 describe each mode under
assumptions listed in the section 5.5.2.

Store modes may be classified into single-pump and
double-pump. There are three single-pump modes: un-
delayed, delayed-data and delayed. There is one dou-
ble-pump store mode: delayed-data. The name of the
store mode is assigned depending on when the store in-
struction is clocked in on C12..0 pins and when the result
becomes available at the outputs Xai..o and/or Zs1..0
relative to the completion of the operation in the last
stage (stage 3) of the multiplier or ALU. See figure 25.

SINGLE-PUMP UNDELAYED STORE
(FIGURES 26-27)

If the operation is clocked in on the rising edge of
cycle 1, the result of the operation will be available at
the output of stage 3 in the first half of cycle 3. In order
to store this result in the second half of this cycle, the
store instruction must be clocked in on the rising edge of
cycle 3. The result is output via the C or D buses and the
E port bypass mux. This mode has the lowest latency.

SINGLE-PUMP DELAYED-DATA STORE
(FIGURES 28-29)

The timing relationship between the completion of an
operation in stage 3 and the clocking-in of the store in-
struction on C12..0 inputs is the same as in the undelayed
store case; however, the actual storing of the result at
the outputs is delayed by one cycle, thus increasing the
latency by one cycle. On the positive side, the output
delay is shorter.

SINGLE-PUMP DELAYED STORE
(FIGURES 30-31)

In this mode bypassing is automatically disabled on
stores. Therefore, delayed stores are possible only from
the register file. The timing relationship between the
clocking-in of the store instruction on the Ci2..0 inputs
and the actual store taking place in the same cycle is the
same as in the undelayed case; however the store in-
struction is clocked in on the rising edge following the
availability of the result at the output of stage 3.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

5.5. Load/Store Operations and Their Control, continued

DOUBLE-PUMP DELAYED-DATA STORE
(FIGURE 32)

If stage 3 produces the result in the first half of cycle 3,
the store operation must be clocked in on the rising edge
of cycle 3. The store of the least-significant half of the
result will take place in the second half of cycle 3 and
the store of the most-significant half in the first half of
cycle 4.

Note that double-pumping is supported only for configu-
rations A and C.

21

EFFECTS OF NEUT-, STALL-, AND ABORT- ON
STORE OPERATIONS

If a store instruction is clocked in on the rising edge of
cycle N, then:

STALL- or ABORT-, asserted during cycle N - 1, will
eliminate the effects of any store operation.

NEUT- or ABORT-, asserted during cycle N, will elimi-
nate the effects of a store instruction only if it is single-
pump delayed-data store.

CLK

5.5. Load/Store Operations and Their Control, continued

IIIIIII IIIII.
°
©
S
o AN
> 9
« =
—o 1 __ _> S
° -
c
2 N
2 :
- m IIIIIIII 4 -
3 oy
o /2]
o
- O D -
£ W
wn 0]
hs
L
SHs H> F-F-
S %
— v e e v——— —— — — o e
%)
—_ i
Z 3
[z
& °
5 & =
(¢]
= o)
o - © <
: : : 4
o ps pos >
(6] Q x =

-— €

=
LOAD

Cip o (I1O)

— e s e e e e et o e e

— s . o e e e s e e

33}
G
s
llllll L
o 7 =4
© %
%)
—_ =
3
i =
& °
w -
& » o
° > 3
@ ° <
- - =
<) 2
(@] x =

) ——— s — e s o

—— s

LOAD
OP

—— e — s — e s — — — —

Cy4y. 13l OPERATION)
X5 o Ya; o INPUTS

Cis. 0 (110)

e —

— —

—— e ——— s — e e . i s —

——

MUL/ALU

Cys. o (/O)

—— e —— s s e] ——

—— e ———

o %
- [e] 2
n

— =

2 2

= Z

s o

w -

o ©

o >

r .

i e

< 2

(6] x

¥
I§T

STAGE 2

|
AGEX
]

Figure 14. Load timing: conceptual diagram for comparison of load modes

MUL/ALU

22

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
5.5. Load/Store Operations and Their Control, continued

—_

CLK

3 4
LOAD LOAD / LoaD\ / LoAD\
Ci2. 0ll/0) x-S] X8

Cs1..13 NOP oP1

(OPERATION) N __/
x31..0 X1-LS {X1-MS) { x2-LS)
__/

INPUT

Y31

..0
INPUT

Y1-LS Y1-MS Y2-LS Y2-MS

STAGE 1

|

STAGE 3

(6}

(o]
—_—_—)—————e— e e e e e e]

~J I

o
S

REGISTER
FILE
WRITE

X REGISTER
WRITE

Y REGISTER
WRITE

—— ——— e ———] — ———

RO

Figure 15. Single-pump undelayed load—Configuration A

23

5.5. Load/Store Operations and Their Control, continued

CLK

LOAD
S,MS

C12..0{/0)

—

NOP

Cs1..13

——— ——

(OPERATION)

X314.0

INPUT

STAGE 1

STAGE 2

X REGISTER

REGISTER
WRITE

Y REGISTER
WRITE

STAGE 3
FILE
WRITE

Figure 16. Single-pump undelayed load—Configuration B

24

10

3164/3364

64-BIT FLOATING-POINT
DATA PATH UNITS
November 1989

5.5. Load/Store Operations and Their Control, continued
CLK

————— - —— . s e ey e o e e ——] — i — —— s s o s v e o o

&
()
o

&
o
(]
ﬂmu s
o s .
w g I ——t———t—————— L e e —
> N

bod4-Lory]

I
I
}
|
|
I
|
I
I
I
1
|
|
|
[
|
|
|
!
I
I
I
i
I
1

z
Q o c o
.M -— o~ ™ _._m E TI._
Q2 O % % % »n w nw nuw
= ‘w o GwrE fol= GE
o) -0 -5 < < < GLan. T T
= 0 0> [[[= w w
= o< x Z n n n T4TIE S xr2T >aZ

C12..0

25

Figure 17. Single-pump undelayed load—Configuration C

CLK

5.5. Load/Store Operations and Their Control, continued

......................... -

s~
—J
1
V.
z
Q o o d o
M - N [} E E __._I._
[} R o O % % % »n w nw nuw
) o 2 2 Gwk o= o=
80 e ol ol < = = waT wx T
0= 0ol x Z > Z n n n T xxT >a3F

26

Figure 18. Single-pump delayed load—Configuration A

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
5.5. Load/Store Operations and Their Control, continued

N
w
[é,]
o);
~
[oe)
I_

CLK 1 4

|
(I70) S\M |
| |
Ca1.13 oP2
(OPERATION) i

|
Yai. 0 X1-MS Y1-MS X2-MS Y2-MS
INPUT /

i
(3

. !i
. E
|
—— ——— ———— — —— — — ——— t— —f— —

X31..0
INPUT

—— — e —— —— ———— — ———— ————— —

|

! ! I I i
STAGE 1 l i L { o\ L { or

| | | /I I __/l

| | | | | |

i | | | | |
STAGE 2 : : : oP1 op2

N =
STAGE 3 I I I I Vorr\ | oo\

| | | | L\ / | N /

I I I ! I I !
REGISTER | | | | |] |]
A T R R B
X | | / \ | /\l | | |
REGISTER { : X1 } x2 } { }
A T L A A R

| | i I | | I |
Y l L l /v \ 1 /o \ l l
REGISTER | 2] v2]]
WRITE I l A | I I

Figure 19. Single-pump delayed load—Configuration B

27

11

10

CLK

5.5. Load/Store Operations and Their Control, continued

—d e e e e e —— —_——— e —
g
g
(o)
g
O
[\ 1
N

a
o
a <
o) >3
-0
>
-0
X3
lllllllll o S D G G S— . S— S CE S GA S—
@ @ @ S A U RN (U S M
= e A
Q od o @
M s o~ g w w _..hl._
o oF ok w w w th w m m
: ‘w ‘5 o 9 Q FubE g e
o) 0 - < < < Qouw— U= O=
=< 0 ol - - = wT we we
o= 02 x Z) 0 n Lz xx3 >a

28

Figure 20. Single-pump delayed load—Configuration C (3164 mode)

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
3.5. Load/Store Operations and Their Control, continued

CLK 11 2 3 4 5__1_—6

c:12..0

|

X-LS, MS . {
(170} Y-LS,MS, | Y-LS, MS, |
|

1 |

Ca1..13 Q op2 |
(OPERATION} | |
|

I

X31..0 x1-L8 X x1-Ms¥X x2-Ls X x2-ms }—+
INPUT /
i |

|

]

|

|

|

)
—
—

—— s e s —

!
]
|
|
|
|
|
!
!
|
|
|
|

INPUT |

|
| | |

STAGE 1 @ oP2 I

N N/ |

|

\

' /i

—— e o —— e —— —— e —— —— g ——— s — — — g ———— —

|

| | | | |

|] l/ . I
STAGE 2 | ! OP1 x or2

| | N |

| |] | | |

| | | | | |
STAGE 3 | } } J oP1 oP2

| | | i | |

[| | I | |
REGISTER ! ! ! l ! /_\!
FILE i | } R1
WRITE | | | I | Lﬂ

| | | | |

| | | | |

X
REGISTER x2
WRITE | = I | |

Y
REGISTER Y2
WRITE | : | | |

— i e e e i et i s e e . s s e s s G e s . s S — . — — — — ——-—— s S Sttt Qe e

— —— e —— —— ——

Note: This mode is disallowed with undelayed FPEX.

Figure 21. Double-pump undelayed load—Configuration A

29

5.5. Load/Store Operations and Their Control, continued

CLK

NOP

(CPERATION)

C12..0
(1/0)
C41 .13

— . — —— —— — ——— — — — S S—— S — —
N
o
- N
o >
(5]
2 —_——n e
N
Y
1]
5 S-S QS S QU
N
’ 3
1]
M lllllllllllllll
B
w
-
”— lllllllllll —— —
> s
w
M ||||||| — e— — — — —
T
>
4]
)
[R — C— — — — S——— — c— — e, v —— b — —
Y
@ x
@ uuuuuuuuu B R
o o o«
~ o B E B
o) G, o W oow ouw
< < Qgu= O= 0=
— = w4 we wX
n % s xaxz >a

X31..0
INPUT
STAGE 1

Note: This mode is disallowed with undelayed FPEX.

Figure 22. Double-pump undelayed load—Configuration C

30

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
5.5. Load/Store Operations and Their Control, continued

CLK 1 2 3 4 5 6
] |
c LOAD LOAD \) i
12..0 X-L8,MS X-LS, MS
(1/0) Y-LS,MS, | Y-LS, MS, | (
i | |
| Y e U Y e
Ca1.13 l | oP1 l opP2
(OPERATION) | | |
s s R

A
| | |
l 1 1
l l	
/	
Xa1..0 (x1-LS X1—MSXX2—LSXX2-MS\	
INPUT / I	I
oY om VeV ! ! !	
Y31..0 Y1-LS Y1-MSXY2-LSXY2-MS l	l
INPUT	/ I I
i~	
STAGE 1 l	(oP1 >——<.OF’2 N l l
I\	/I
b=	
STAGE 2 l	4 oP1 X op2 \ l
	\N
N e —w™	
T A R € S Coo	
L T	
I	
REGISTER , i , 1 N -	
N S B R R O	
X l 1 / \ / \ 1]	
REGISTER x1 x2	
WRITE : I _/= _/l : }	
REGISTER L ! (v} { v2 } ' '
WRITE : : _/} _/I | :

Figure 23. Double-pump delayed load—Configuration A

31

3.5. Load/Store Operations and Their Control, continued

«©
- 4t 1 1 1 _J_—|J 1.

8
[{o]
To) 7~ mwu
||||| m R, R S SN I
)
...... -3 i
<t =0
S8 N -
s
TN [

z
o o @ o«
_AM -— N L] [T} m E
-
o 2 o % % % w w nuw ow
L~ T D nwE ok ot
X &0 F& gg g = = Jug Qe g
O o= 0og x Z n n n gL xx3x >a3

Figure 24. Double-pump delayed load—Configuration C

32

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
5.5. Load/Store Operations and Their Control, continued

CLK 1 2 3 4 5
| | I | | | | | I
Ci2..0 Single-pump Undelayed Store STORE l L L L 1
s | | | | | |
I R A R T N
c (OPERATION
41,13) op) | | 1 | I | | l
e L
MUL/ALU —=—<STAGE XisTAGE 2 XSTAGE 3/ T T T T
IR N R T D e N B N
X31..00 2310 f f f i f R f f f
OUTPUTS ! ! ! ! ! IN— 1 ! !
! ; 1 ! | | | | |
Cys. oll/O) Single-pump Delayed-data Store STORE : } : I }
o
C,y 15(OPERATION) op l I | T l I ! I I
) e m) BRI
MUL/ALU —1_<STAG!iX STAGE 2 XSTAGE :> t t t +
| \ | v | y | | | |
| I | | | |] |
Xa1..0" Z31..0 $ } } } $ { } R
OUTPUTS I | | | | | | |
| | } 1 { 1 [1 [1
! ! ! I : I /—l_\ I = l
Cy2..0(/0O) Single-pump Delayed Store { t t— sTore)— 1 t
NNEEEA AN
C,4..13{OPERATION) oP t { t t 1 } t t {
o= mny b
MUL/ALU —t——<sm;ex STAGE 2 Xsmees> 4 } -+ t
| | | | | |]
| | | | | | | | |
e e e e (i
OUTPUTS 1 | | I i | | I
T
Cyp. o(170) Double-pump Delayed-data Store STORE { t f } t
1 !) 1 | | | | |
c (OPERATION) ! JI ! ! ! ! ! ! l
41..13 oP T T L T 1 T 4 T 15
o
MUL/ALU —‘_<’>‘TAGEX STAGE 2 STAGE 3\ l l | !
I i | /1 I I I
| [| | I | | |
Xs1.0 Za1.0 L bbb (o Ko y——
OUTPUTS | [| | [| | |

Figure 25. Store timing: conceptual diagram for comparison of store modes

33

5.5. Load/Store Operations and Their Control, continued

CLK 1 2 3 T 4
| | |
Cis 0 : : STORE STORE :
(1/0)
! | |
c LS = X315 LS = X515 l
(OPERATION) MS — Z310 MS — Z510 |
| l |
| | |] I
| | | | |
=
STAGE 2 | 4 oP1 X opP2 N |
\N	/i		
]			
STAGE 3	} oP1 oP2		
I e
REGISTER l !] . ro
WRITE ! } ! \—/,i Sy
] | | L .
Xa1. 0 l]] (R1-LS
OUTPUT | I I \
=
Z3,.0 | l l \/ R1-MS
OUTPUT l : l

Figure 26. Single-pump undelayed store—Configurations A and B

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
5.5. Load/Store Operations and Their Control, continued

/ [
CLK 1 2 3 4 5 6 7 8 l__

STORE STORE STORE STORE
\R1-LS R2-LS R2-MS

|
c12..0 l
(1/0) :

041..13 OP1

(OPERATION)

|
l
I
| |
NOP OP1/ :
C T T
STAGE 1 } oP }
|
|

|
| |
| | |
STAGE 2 oP1 oP2
|
|

l
|
|
I
|
|
!
|
|
!
|
|
!
|
|
!
|
|
=

|
|
| | I
- :
STAGE 3 l i Voo V1
| | N_/ I
| | | | |
PR N D B o R B '
+ + ' R1 R2
WRITE | | | _ﬂ | Lﬁ
| i | | | | !
| | | /
X31..0 J } } R1-LS R1-MS R2-LS R2-MS
oUTPUT | I I\ /
| | | [[| [

Figure 27. Single-pump undelayed store—Configuration C

35

5.5. Load/Store Operations and Their Control, continued

CLK
Ci2..0

(/O)

C41 .13
(OPERATION)

STAGE 1

STAGE 2

STAGE 3

REGISTER
FILE
WRITE

X31 ..0
OUTPUT

Z31..0
OUTPUT

]

w

4 5

)

{ STF%RE).

LS = X4,

P1

{ STROZRE)

LS = X35,

OP1 OoP2

>< -

o)
X

ol

———) — — —— — — ———— ——— — i ——————

B T R e e

()

R1-LS

- ———— — —— — — . ———— —— —— — — ———] —— —— — —_ ———

EJ
s R maatatts S B

AN 7N

Jat
o W

Figure 28. Single-pump delayed-data store—Configurations A and B

36

5.5. Load/Store Operations and Their Control, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

CLK 1 2 3 4 5 6 7 8
| | L L L] |
Cc } | /STORE\ /STOF(E STORE STORE] l
(I;é-)-o I I R1-LS R1-MS R2-LS R2—MS/ | |
| | 1 I | |
4 . . \ | | | | |
Car..13 oP1 NOP oP2 ! l ! l L
(OPERATION) / | | | | |
T T~
STAGE 1 | oP1] o2 l]]]
| \ /| | \ /i | | | |
] | | | | | | |
| | | | | | | |
STAGE 2 ﬂ P 1 | |
| | | | | | | |
N e N I
STAGE 3 | | oP1 ! op2 ! ! .
I A B A B R
| | | | I | | |
T I S /g M N g M S
WRITE | | I _/ | I I |
T I My P N N S
X310 l | l L { R1-LS >-< R1-MS R2-LS >-< R2-MS>_
OUTPUT I I I I\
| | | I

Figure 29. Single-pump delayed-data store—Configuration C

37

5.5. Load/Store Operations and Their Control, continued

oLk 1 2 R 4 5 T—g

| | | |
=120 | | | N @ |
o) | | i |
c ! LS — X534 LS = X3,5 |
41..13 oP2 MS - Z MS = Z N T—
(OPERATION) @ | 31-0 31-0 |
| I | |
I | | | | |
| | | | | |
| | | | | |
STAGE 2 | { oP1 X op2 \ | |
| \\ | /1 | |
| | | I | |
' ' N\ [\ ' '
STAGE 3] | oP1 oP2]]
| | N/ _/ | |
| | | | | |
REGISTER l I LN N l
R1 R2
I A R A=
| | | I L L
X310 : : : : < R1-LS >—< R2-LS >—
OUTPUT
I s
Za1 0 | !] l < R1-MS >—< R2-MS >—
OUTPUT : I : I

Figure 30. Single-pump delayed store—Configurations A and B

38

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
5.5. Load/Store Operations and Their Control, continued

CLK 1 2 3 4 5 6 7 8
l | | [: !
o g i i L {srerey—(rone—Saore)—(Gacoe)——
(1/0)
L L AT T T T
Ca1.13 OP1 \ /NOP\ /opz\ l l ! | !
(OPERATION) \ / | | | | I
| | | | | | | |
STAGE 1 oP1 L { o ¥ 1 | I {
| \ /I | | | |
I | | | | | | |
| | | | | i | |
| I | | | | | |
BN
STAGE 3 ! | oP1 | o2 | 1 |
S
| | |] | | | |
REGISTER i 1 ./ o) A | 1
WRITE | | | \ /i | \ /| | I
| | l | ! ! T |
X31..0 ! l l L/ A1-LS R1-MS R2-LS A2-MS
OUTPUT | | I I\
] | | | |

Figure 31. Single-pump delayed store—Configuration C

39

5.5. Load/Store Operations and Their Control, continued

CLK 1 2 3

C l l ATO?E\ ATORE\
12..0

(1/0) : : S.M

4

R
\:s.Ms/
]
Cii.8 oP2 l
(OPERATION}) |
|

[I |
|

STAGE 2

OP1

I8
B LN -+
JTTTS

STAGE 3

[0
X

—— e ——— —— — — — e ——— e ——— f— —

REGISTER
FILE
WRITE

ol
10

X31..0 0"

231,.0

R1-LS AR1-MS
\

>

R2-LS A R2-MS
Xy

\

— k-

OUTPUT

—— s — s i Gt ——— i ——— e —————— —— e ————w—— —

— i —— — i ——— o — —— e ——— e t— t— — i — —— " o—

Figure 32. Double-pump delayed-data store—Configurations A and C

40

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

5.5. Load/Store Operations and Their Control, continued

5.5.5. ALLOWABLE LOAD/STORE COMBINATIONS

Some load/store combinations have a timing conflict.
One example of such a conflict is shown in figure 33.

From the timing standpoint, a store can follow any load,
but not necessarily vice versa. Just because a load fol-

lowed by a store may not have a timing conflict, how-
ever, does not necessarily mean that such code may be
interruptible. Interruptibility is discussed in section 16.
Allowable load/store combinations are listed in figure
13.

If a single-pump

undelayed load im-
mediately foliows a
single-pump
undelayed store,

there is a conflict
between the output

of the previous
result R1 and the
input of the new
operand on the

X port.

CLK 1 2 3 ¢
—— | . "
Ci2..0 ¥942 XoMS 1 ::515‘
X Y1-C8 1-M | '
e _Ij !
C41..13 NOP OP1 :
(OPERATION) _,._/ 1
|
X31..0 X1-LS X1-MS l
INPUT/OUTPUT _'_/ i
i | |
Y oy
31..0 Y1-LS Y1-MS 1
INPUT | \I_/ I
| [|
Z31..0 4 + !
QUTPUT : : :
| | |
STAGE 1 : : — \
| |
| |
STAGE 2 : :
| |
| I
STAGE 3 ! :
| |
1 1

Figure 33. An example of load/store conflict for Configuration A; a single-pump undelayed store followed by

a single-pump undelayed load

41

6. Register File

The 3x64 contains a six-port, 32-word by 64-bit register
file. See figure 34.

1F lD lC

fe————— B4-bits ————= 32 registers

Figure 34. The six-port register file

6.1. Storage Of Data Types

The data types supported in the 3x64 are stored in regis-
ters as shown in figure 35 and described below. This ap-
plies to X and Y registers as well as to the register file
registers. It does not apply to T-latches (see section 10).

Double-precision floating-point and 64-bit logical data
occupy the entire 64-bit width of a register. In single-
pump mode, the two halves of a 64-bit floating-point or
logical quantity can be loaded into the most-significant
and least-significant halves of the register in any order.

Single-precision floating-point data is stored in the upper
32 bits (bits 63..32) of a register. The unused bits in the
lower half of the register (bits 31..0) remain unchanged.
(However, if a single-precision operation is performed,
and the result is also specified to be single-precision,
then when this result is written into the upper half of a
register, bits 31..0 of this register are set to zero.) Any
one register may contain only one single-precision float-
ing-point number; that is, when the upper half of a regis-
ter is used to store one single-precision floating-point
number, the lower half may not be used to store an-
other.

Integer data is stored in bits 52..21 of a register. The
unused bits (63..53 and 20..0) are automatically set to
zero by the load instruction as well as by any integer

42

instruction. Any one register may contain only one
32-bit integer number.

Note that when writing to, or reading from, the register
file, the load/store controls XCNT, YCNT, and ZCNT of
the code word require the user to differentiate integers
from other data types. Thus the user (or compiler) must
know the data type when the data is being loaded, and
must keep track of which register stores which data type
so that the correct one can be specified when storing.
For more information on loading and storing of various
data types, see section 5.5.

63 0

64-bit floating point

63 32 31 0
32-bit floating point 0
63 53 52 21 20 0
0 32-bit integer 0
63 0
64-bit logical

Figure 35. Storage of data types

6.2. Register File Ports and Internal Buses

The register file has six ports: three read-only ports, A,
B, and E; and three write-only ports, C, D, and F. See
figures 1-3. Each port can transfer a 64-bit data word
on every cycle.

The A and B ports can be used to supply operands to the
ALU, the multiplier, and the divide/square root unit,
from two internal 64-bit buses: the A bus and the B bus,
respectively.

The C port receives the result of the previous ALU op-
eration, via the internal 64-bit C bus; the D port receives
the result of the previous multiplier or divide/square root
unit operation, via the internal 64-bit D bus.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

6.2. Register File Ports and Internal Buses, continued

The E port is used to store the contents of a register in
the file through the external X and/or Z ports, via the
internal 64-bit E bus. The F port is used to load a register
in the file from the external X port, and, when the 3364
is used in configuration B (single 64-bit I/O bus), also
from the Y port. The F port loads occur via the internal
64-bit F bus. The E port may be bypassed on stores, and
the F port on loads; see section 6.5.

This organization allows calculation to proceed in paral-
lel with 1/0 transfers, maximizing system performance.

6.3. Register File Addressing

The A and B ports supply operands to arithmetic units
(ALU, multiplier, and divide/square root unit). The C
and D ports receive the results from the arithmetic units.
Each port has a separate and independent 5-bit address
field in the code word. This allows two operations to be
initiated, and two results from previous operations to be
written into different registers in the register file, on
every cycle.

The E port address and the F port address share the
same 5-bit field in the code word. For this reason, either
a load or a store may be specified on any given cycle.

43

Port Address Code Word Bits
A port AADD Caz..28
B port BADD Ca7..23
C port CADD C22..18
D port DADD Ci7..13
E port EFADD Ci2..8
F port EFADD Cr2..8

Figure 36. Ports on the register file

It is possible to perform both a load and a store on the
same cycle: since a register file read is performed during
the first half of a cycle, and a write during the second
half, the “old” contents of a register may be stored be-
fore it is replaced by the “new” value upon a load. An
example is described in figure 37. In a, the C12..0 pins of
the code input specify a single-pump delayed load, fol-
lowed by a single-pump delayed store. Even though the
load instruction precedes the store instruction, the regis-
ter file read of the store instruction happens before the
write of the load instruction. This is example of uninter-
ruptible code. The example in b is interruptible, because
both load and store are specified in the same instruc-
tion.

6.3. Register File Addressing, continued

“ CLK _T 1 __T 2 __J 3 f

| Example of Uninterruptible Code

Ci2..0{1/0) C1: load R5 {SP-D)

C2: store R5 (SP-D)

Note: Bypassing Is dis-

REGISTER FILE abled on delayed stores.

X3y, o/NPUT

Z4, oOUTPUT

(b) —
CLK 11 __T 2 3

| Example of Interruptible Code

Cyz. oll10) C1: load R1, store R1

(SP-U) (SP-D)

Note: This code is interruptible be-
cause both load and store are speci-

REGISTER FILE fied in the same line.

X3y, oINPUT

2,4, oOUTPUT

——— i ———— ————

Figure 37. Reading and writing the same register in the same cycle

44

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

§
6

-4. Register File Write Priority

It is possible that up to three different sources specify
the same register write address: the result of a multiplier
operation, the result of an ALU operation, and a load.
In other words, at least one pair of the CADD, DADD,
and EFADD fields point to the same file register. When
such a conflict arises, it is arbitrated according to the
these priorities:

Register File Input Priority
Load Highest
ALU output (C bus)
Multiplier output (D bus) Lowest
Figure 38.
EXAMPLE

In general, if register file priority must be invoked to
resolve conflicts, the code that causes these conflicts is
usually “bad” code.

45

Instruction Operation
c1 R1 OP1 R2 — R4
C2 LOAD R4 (Delayed load)
C3 R4 OP3 R5 — RO
Figure 39.

Refer to figures 39 and 40. If OP1 is a 32 32 floating-
point multiply, then the result of the multiply operation
will attempt a write to R4 at the same time that the de-
layed Load R4 will try to write to the same register. In
this case, the load will take priority. Then the third op-
eration OP3 will use the data just loaded as one of its
operands, rather than the result of the previous multiply
operation.

Section 16 deals with illegal code sequences and inter-
ruptibility in more detail.

6.4. Register File Write Priority, continued

Ci2..010)

Single-pump

delayed load Assumptions:

C

41..13 1. OP1 is a 32 X 32 multiply
(OPERATION)

2. Delayed load of a
32-bit operand

x31..0

CLK 1 | 2 3 4 | 5
|
|

c2
|
I
t
|
|
I
]
|
|
|
|

MUL- STAGE 1
Load “wins” over the
result of the Mulitiplier
MUL- STAGE 2
MUL- STAGE 3

Conflict

REGISTER FILE

Note: This is an example of uninterruptible code.

Figure 40. Resolution of register file write conflicts

46

6.5. Register File Bypassing

Bypassing logic is enabled if the Bypass-on bit in the
status register (SR1s) is set. The X and Y registers are
always bypassed on loads, regardless of the state of
SR1s.

The purpose of bypassing is to reduce latency, by one
cycle, in the following three cases:

O On stores, to output the result of an operation simul-
taneously with writing it to the register file

O Onloads, to provide the data being loaded as an oper-
and simultaneously with writing it to the register file

O Register-to-register operations

We will consider each of the three cases in turn.

6.5.1. BYPASSING ON STORE OPERATIONS

Except for delayed store mode, bypassing on stores al-
lows the result of an operation to be output through an
external port simultaneously with being written to the
register file. If the EFADD field of a store operation is
equal to the CADD (or DADD) field of an arithmetic
operation whose result is placed on the C bus (or D bus)
on the same cycle when the store operation is active,
then this result is bypassed to the E bus for output, while
at the same time this result is written to the register file
through the C port (or D port). Note that the result is
always written to the register file. Without bypassing, the
result would have to be written to the register file and
then read out by a subsequent instruction. Bypassing
reduces latency by a cycle. In delayed store mode, by-
passing on stores is automatically disabled, and stores
occur from the register file.

Figure 41 provides an example of bypassing on store.
Consider this sequence of instructions:

C1 R1 X R2 —+ R3
Cc2 R5 OP R6 — R7
C3 Store R3

This store can be single-pump undelayed or single- or
double-pump delayed-data; in this example we assume
single-pump undelayed store.

Bypassing is activated when the register file address
specified by the EFADD field of the store instruction is

47

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

the same as the DADD specified for the result of the just-
completed multiply operation. Since these two ad-
dresses are the same, the result of the operation is writ-
ten into a register and simultaneously output through an
external port.

If there is a conflict, that is, CADD = DADD = EFADD, it
is resolved according to the same priorities as register file
writes (see section 6.4). This is true for all three cases of
bypassing.

6.5.2. BYPASSING ON LOAD OPERATIONS

Bypassing on loads allows an input through an external
port to be used as an operand simultaneously with being
written to the register file. If the EFADD field of a load
operation is equal to the AADD (or BADD) field of an
arithmetic operation which is being activated on the
same cycle with the data being loaded, then this input
data is bypassed to the A bus (or B bus) to be used as an
operand, while at the same time this data is written to
the register file through the F port. Note that the load
always writes to the register file. Without bypassing, the
input data would have to be first loaded into the register
file, and then used as an operand of an arithmetic op-
eration on the following cycle. Bypassing on loads also
reduces latency by a cycle. Figure 42 provides an exam-
ple.

Note that bypassing of X or Y registers on loads cannot
be disabled regardless of Bypass Enable bit in the status
register.

6.5.3. BYPASSING ON REGISTER-TO-REGISTER
OPERATIONS

Bypassing is also used in register-to-register operations.
When the result of an operation is used as an input to a
subsequent operation, bypassing allows the second op-
eration to begin as soon as the result of the first is com-
pleted — eliminating a trip through the register file. Note
that the register file is still written with the result of the
first operation.The logic diagram of bypassing is given in
figure 43. Using figure 44 as an example, bypassing is
accomplished by specifying the destination address of
the result of instruction C1 to be the same as the address
of one of the operands of instruction C3.

6.5. Register File Bypassing, continued

CLK

Cyz.0(/0)

C41“13
(OPERATION)
STAGE 1
STAGE 2
STAGE 3
REGISTER FILE

X3y, oOUTPUT

25, oOUTPUT

w

— o — —— e ———

READ

R1,R2

INSTRUCTION /o

NOP

c2 NOP

C3 STORE R3*
(EFADD = R3) -

OPERATION

R1 X R2 — R3

REGISTER FILE ADDRESS

R5 OP R6 — R7

*single-pump undelayed store

EFADD =—

DADD=EFADD
causes register
file bypass

Figure 41.

Register file bypassing on store

48

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

6.5. Register File Bypassing, continued

CLK 1 2 3 4 5 |_

|
Crz. oll/0) I AADD = R1
BADD = R5| Xis bypassed
| EFADD = R5] to the B bus
Ca1..13 c2 I CADD = R7
(OPERATION) |
|
X4y, oINPUT
ALU-STAGE 1
ALU-STAGE 2
ALU-STAGE 3

REGISTER FILE

INSTRUCTION 1/0 OPERATION REGISTER FILE ADDRESS
C1: LOAD* R5-LS NOP
c2: LOAD* R5-MS Rt + R5 — R7
\ | S CADD Equality enables
BADD = EFADD register file by-
AADD pass

*Single-pump undelayed load, Configuration C

Figure 42. Register file bypassing on load

49

6.5. Register File Bypassing, continued

Stﬂre Load

t F c,D
EWrite - Second 1/2 cycle

' Read - First 1/2 cycle

l E | A,B .

MUX MUX Bypass

\ |
Stage 1 - 1/2 cycle

Stage 2 - 1 cycle”

b
Stage 3 - 1/2 cycle

Multiplier or ALU {

*Two-cycle latency mode

Figure 43. Diagram of bypass logic

50

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
6.5. Register File Bypassing, continued

CLK

C41..0

STAGE 1

STAGE 2

STAGE 3

REGISTER FILE

INSTRUCTION OPERATION REGISTER FILE ADDRESS
ct: R1 OP1 R2 — (R9———— CADD/DADD
c2: R7 OP2 R8 — R9 1 Equality enables
c3: @om R4 — RS T bypass
AADD/BADD

Figure 44. Bypassing on register-to-register operations

51

7. Multiplier

The 3x64 multiplier is pipelined, with two pipeline regis-
ters and three stages. See the block diagram in figures 2
and 3. Every multiply operation passes through these
stages in succession, as described in figures 45 and 47.
The multiplier may be set to operate in either two-cycle
latency mode or three-cycle latency mode. In two-cycle
latency mode, every multiplication takes two cycles if
bypassing is used and three cycles if it is not. The three-
cycle latency mode affects only integer and double-pre-
cision floating-point multiplications: they take three cy-
cles with bypassing and four cycles without; other
operations execute exactly the same as in the two-cycle
latency mode. At any given instant, two different multi-
ply operations may be executing in the multiplier.

7.1. Multiplier Stages

Stage 1 contains front-end circuits to detect source ex-
ceptions, for example, denormalized numbers, NaNs,
invalid operations; and an adder to add exponents of
floating-point numbers. If an enabled source exception
or an invalid operation is detected in stage 1, the float-
ing-point exception output pin, FPEX, will be asserted,
to indicate the exception to the rest of the system. The
timing of FPEX assertion depends on FPEX modes (de-
layed/undelayed and sticky/pulsed) and is described in
section 15. Stage 1 always operates after the rising edge
of the clock but no sooner than the operands are avail-
able, usually after the falling edge.

Stage 2 contains a fixed-point half-array multiplier to
multiply integers or mantissas of floating-point numbers.
Single-precision and mixed-precision floating-point mul-
tiplications complete in one pass through the array,
while double-precision floating-point and integer multi-
plications take two passes. These two passes take one or
two entire clock cycles, depending on the selected la-
tency mode. In two-cycle latency mode, stage 2 opera-
tion takes one cycle, that is, both passes of the integer or
double-precision floating-point multiplications complete
in one cycle. In three-cycle latency mode, each pass
takes a cycle; thus stage 2 operation takes two entire
clock cycles. However, since it is necessary to pass
through the array only once per cycle, the cycle can be

52

shorter. Multiplier latency modes are discussed in sec-
tion 7.3.

Stage 3 contains IEEE rounding circuits and result ex-
ception circuits. Stage 3 operation always takes place in
the first half of a cycle following the completion of stage
2 operation.

Integer add/subtract, logical (except single-bit shift),
compare, and min/max operations are performed in the
multiplier. Logical operations are always performed on
64-bit words.

7.2. Multiplier Operand Sources and Result
Destinations

The multiplier has two input ports and one output.

The selection of input port operands is controlled by the
MAIN and MBIN muitiplexer controls in the code word.
The mnemonics “MAIN” and “MBIN” stand for multi-
plier A input and multiplier B input, respectively. The
sources of multiplier operands are the X and Y registers,
and the A and B ports of the register file. The selection
of the multiplier operands is specified in section 17.

The output of the third stage of the multiplier is placed
on the D bus and:

O is always (except for compare operations) routed to
the D port of the register file (the address of the regis-
ter in the file is given by DADD field of the code word
in the cycle in which the instruction was latched);

can also be forwarded to the internal E bus for output,
bypassing the register file on a store operation (this is
discussed in the section 6.5);

in multiply-add operations, is routed to one of the
temporary latches TO or T1 (this is discussed in sec-
tions 10 and 17);

in register-to-register operations, can be forwarded di-
rectly to an input of the multiplier or the ALU, by-
passing the register file (this is discussed in sec-
tions 6.5 and 17).

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
7.2. Multiplier Operand Sources and Result Destinations, continued

WRITE
2

WRITE 1

CLK 1 2 3 4 5 | 6
D Ve N l l l
C41 0 C1 c2 c3
" | | |
= =
REGISTER FILE READ READ READ | } |
A A A N
STAGE 1 : c1 c2 ca : :
=R
|
STAGE 2 ! !-(c1 X c2 X ca >-! }
| | | | | |
S I N =
STAGE 3 : : I ci I c2 | c3 I
I = e
REGISTER FILE : : WRITE WRITE
I |

Ql

G

Figure 45. Operation of the ALU and the multiplier in two-cycle latency mode

53

7.3. Multiplier Latency

The 3x64 provides for two multiply latency modes: two-
cycle latency mode and three-cycle latency mode. The
latency mode is controlled by a Multiplier Latency mode
bit in the status register, SRO7.

SR07 = 0 Two-cycle multiply latency mode
1 Three-cycle multiply latency mode

Figure 46.

The purpose of providing the two modes is to allow the
user to have faster single-precision floating-point and in-
teger multiplications at the expense of double-precision
multiply performance.

It is possible to switch between the two multiplier latency
modes by changing the value of the mode bit in SROz.
This is accomplished by loading a new value into SRO.
Storing and loading of the status register is described in
section 12.2.

Figure 47 provides a timing diagram of a multiply in
three-cycle latency mode. Figure 48 details the latency
and throughput of the multiplier for integer and single-
and double-precision multiplications in both latency
modes. The ALU performance is shown in the figure for
completeness only. It is not affected by the latency
mode.

oLK 1 2 3 4 5 6 7 8 | 9
| | |] | | | |
c | | | |
41..0 C1 NOP c2 NOP C3 | T T T
T T | | | |
| I | | I | | |
?E%ISTER REA| | bREAD\ | bREAD\ | ! | l
N1/ I N2/ i 3] | | |
R | | M~ | | |
ettt (———F+—
		u	\—4			
]]		
	T	T	T			
]	
mees 44—)
A
REGISTER I | [| | I
FILE I I I I WF}IT I WF;IT I WF:RSIT
WRITE | [[[\—;I [| | [
Note: Applies only to integer and double-precision floating-peint multiplications

Figure 47. Operation of the multiplier in three-cycle latency mode

54

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

7.3. Multiplier Latency, continued

The following are advantages and disadvantages of the
two modes.

Advantages of two-cycle latency mode:

O Shorter double-precision multiply latency than in the
three-cycle latency mode

O Greater I/0 bandwidth because double-pumping may
be used

O An integer or a double-precision floating-point multi-
ply instruction can be followed by another multiplier
instruction on immediately successive clock cycles

O Multiplier and ALU always have the same latency,
two cycles

Disadvantages of two-cycle latency modes:
O Longer cycle time
Advantages of three-cycle latency mode:

O Shorter cycle-time than in the two-cycle latency mode

Disadvantages of three-cycle latency mode:
O Longer double-precision multiply latency

O Double-precision floating-point and integer multipli-
cations have different latencies in the multiplier
(three cycles) and ALU (two cycles). Even two differ-
ent multiplies can have different latencies: integer or
double-precision floating-point three cycles and all
other operations (except divide and square root) two
cycles. An integer or a double-precision floating-point
multiply instruction must not be immediately followed
by another instruction executed in the multiplier
which also places its result on the internal D bus. This
restriction is necessary to avoid stage 2 conflict, an
example of which is illustrated in figure 49. If this re-
striction is violated, the second instruction will be ig-
nored.

Latency Mode
Two-cycle Three-cycle
Multiplier
Integer and double-precision
floating-point multiplications
Register-to-register latency, cycles 2
Throughput, cycles 1
All other multiplier operations,
including 64 X 32 multiplications
Register-to-register latency, cycles 2 2
Throughput, cycles 1 1
ALU
Latency, cycles 2 2
Throughput, cycles 1 1
/0 Pumping Single or double Single only
MAX DIVCLK Frequency 2XCLK 2XCLK

Figure 48. Multiplier latency modes and their effect on performance

55

7.3. Multiplier Latency, continued

CLK 1 2 3 4 5 l_
_—
| | |
Cii 0 c1 If two multiply In'structions are
h issued in immediately succes-
sive cycles, then the second

| multiply instruction will attempt
REGISTER to use the second multiplier
FILE READ stage while the first multiply in-
READ 1 struction is in progress there,

| creating a conflict.
STAGE 1 :

|

|
STAGE 2 :

|

|
STAGE 3 {

|
REGISTER |
FILE I
WRITE |

Figure 49. Why, in three-cycle latency mode, two integer or double-precision floating-point multiply instruc-
tions may not follow each other

56

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

8. ALU

The 3x64 ALU is a pipelined unit, with two pipeline reg-
isters and three stages. See block diagram in figures 2
and 3. Every ALU operation passes through these
stages in succession, as described in figure 45. Because
the ALU is pipelined, every ALU operation takes two
cycles, but a new operation can be initiated, and a result
can be obtained, on every cycle. At any given instant,
two different operations may be executing in the ALU.

From a programmer’s standpoint, the operation of the
ALU is similar to that of the multiplier in two-cycle la-
tency mode. The latency of ALU operations is always
two cycles; its throughput is one cycle.

8.1. ALU Stages

Stage 1 contains front-end circuits to detect source ex-
ceptions, such as denormalized numbers and NaNs, as
well as invalid operations. If an enabled source excep-
tion or an invalid operation is detected in stage 1, float-
ing-point exception output pin, FPEX, will be asserted.
The timing of FPEX assertion depends on FPEX modes
(delayed/undelayed and sticky/pulsed) and is described
in section 15. Stage 1 always operates after the rising
edge of the clock but no sooner than the operands are
available.

Stage 2 contains a shifter to denormalize the fraction of
the smaller of the two operands or to renormalize the
result; and an adder. Stage 2 always takes one cycle
following the completion of stage 1 operation. This stage
performs integer and single- or double-precision float-
ing-point additions and conversions, as well as single-bit
shifts.

57

Stage 3 contains IEEE rounding circuits and result ex-
ception circuits. Stage 3 operation always takes place in
the first half of a cycle following the completion of stage
2 operation.

8.2. ALU Operand Sources and Result
Destinations

The ALU has two input ports and one output.

The selection of input port operands is controlled by sin-
gle-bit AAIN and ABIN multiplexer controls in the code
word. The mnemonics “AAIN” and “ABIN” stand for
ALU A input and ALU B input, respectively. The
sources of ALU operands are the X and Y registers, the
A and B ports of the register file, and temporary latches.
The selection of these sources is detailed in section 17.

The output of the third stage of the ALU is placed on
the C bus and:

O is always routed to the C port of the register file (the
address of the register in the file is given by CADD
field of the code word in the cycle in which the in-
struction was latched);

can also be forwarded to the internal E bus for output,
bypassing the register file on a store operation (see
section 6.5);

in register-to-register operations, forwarded directly
to an input of the multiplier or the ALU, bypassing
the register file (see section 6.5).

9. Divide/Square Root Unit

The same multiplexers that select muitiplier operands
also select the operands for the divide/square root
(DSR) unit. When a DSR operation is initiated, no other
operation may be initiated on the same cycle. The re-
sults of a DSR operation are placed on the D bus through
the multiplier.

The DSR has a separate clock input, DIVCLK. It may
operate at either the same (1X), or double (2X) the
frequency of the main clock CLK. In two-cycle latency
mode, the maximum DIVCLK frequency is 2X CLK; in
three-cycle latency mode, 1x CLK.

Divide operations are performed at the rate of two bits
of the result fraction per DIVCLK cycle. Square root op-
erations (SQRT) operate at the rate of one bit of the
result fraction per DIVCLK cycle.

When a DSR operation is completed, the DSR automati-
cally waits for the first cycle in which the multiplier is not
used, at which time its result is unloaded through the
multiplier and stored via the internal D bus. Consider a
sequence of events in the DSR unit, for the case of 2x
DIVCLK. See figure 50. A DSR operation (divide or
SQRT) is clocked in on the rising edge of cycle 1. In the
first half of this cycle operand(s) are read from the regis-
ter file, and in the second half of the cycle they are
latched in the DSR unit. The actual DSR loop starts on
the rising edge of cycle 2. After the loop is completed in
the DSR unit, its result is loaded into the multiplier stage
1, provided the multiplier is unoccupied. To assure that
the multiplier is unoccupied when the loop is finished,

58

and to unload the DSR result through the multiplier
without delay, a NOP can be inserted in cycle 9 (in the
case of single-precision divide). If the unload operation
starts in the first half of cycle N, the result is written in
the register file in the second half of cycle N + 2, so the
entire unload operation takes three cycles. Once the un-
load starts, it essentially “looks” like any other two-cycle
latency multiplier operation. If the multiplier is occupied
by another operation when the DSR loop is complete
and unload could be initiated, the DSR unit waits until
the multiplier becomes available to it. The DSR result
will be stored in the first “empty” timing slot after the
multiplier has finished its operation. The result of the
DSR operation is stored in a register file location whose
address is given by the DADD field of the instruction
which started the operation in cycle 1.

Once a DSR operation has started, the multiplier may be
used for other operations. This multiplier operation may
be initiated on any cycle after the DSR instruction has
been clocked in.

When a DSR operation is initiated on cycle 1, a special
bit, called DSRINP (DSR operation in progress) in the
status register, SR11s, is set in cycle 3; it is automatically
cleared in the cycle preceding the one in which the DSR
result is written into the register file. Using DIV32 as an
example, a store status instruction clocked in on the ris-
ing edge of cycle 3 will “see” DSRINP = 1, and a store
status instruction clocked in on cycle 11 would indicate
that DSRINP = 0; that is, there is no DSR operation in
progress.

3164/3364

64-BIT FLOATING-POINT
DATA PATH UNITS
November 1989

9. Divide/Square Root Unit, continued

s e e o e e e s —— — — s — — —— e~
e e o e e e e e — — — e —— e c— - —

—] e e ———— e - . —— e ———— — ———— — ——— —— —— s (——— - —— — T ———— e om—w— —— e —

o
—] — e > = e e —] N . T el e e et . —_ [P . . e
2 m M

|
]
|
|
|
|
|
|
1
|
|
|
|
I
|
1
|
UNLOAD
|
|
1
|
|
I
|
(N
W
\yl
|
{
|
|
]
1
]
|
]
1
T
|
|
J
|
L

e E s e e e T PR

5
|
|
|
i
I
X
|
|

—_——f e e e e e e e e e e e e e e e i i e e e e e e e e e e e —— e — W e —_—
(@]
)
o
(7]
—— v M'\llnl. — e e e i e e VNN Sy Sy W= —_———te— -t —d A H——-
- ™ W
5 - 5 +—++——1——1+- Q ~—=rF——r——1-1 . T——t——T1T——1—1 § SN,
5 2 S
S T S
—_——— e 2 He—e] 2 e e SR I Sy — — 1 R
=] [a] [od
7]
[a]

NO|

|
1
!

DSR LOOP

P Latch operands in DSR

S |
Ci1..0 ={ova2 :
|
R
|
|
|
|
]
1
G0 -<DIV64>
R
|
I
I
|
|
1
I
R
|
|
|
|
|
h
)
|
SQR
64
|
R
|
|
|
|
|
]

REG
FILE
DSR
DSRINP
SR11(6)

REG
FILE
DSR
41..0
REG
FILE
DSR

X
|
&)

59

Figure 50. Divide and square root timing when DIVCLK frequency is 2 X CLK frequency

9.1. Consecutive DSR Operations

If two DSR operations must follow one another back-to-
back, the second operation may be clocked in on the
code port only after the first operation has propagated to
stage 3 of the multiplier and generated any potential re-
sult exceptions. For example, if two single-precision di-
vides must be executed consecutively, and the first one
was initiated on cycle 1, then the second one may be
initiated on cycle 11. If the second DSR operation is
clocked in before the first one has propagated to multi-
plier stage 2, it will be ignored.

Refer to figure 50, double-precision divide. Any DSR
operation issued on cycles 2 through 16 will be ignored.
If a DSR operation is issued on cycle 17 (C17), that is,
prior to the result of the previous DSR operation, (C1)
having propagated to the third stage of the multiplier, it
is possible that both C1 and C17 will have result excep-
tions. If this happens, by the time an interrupt handler
can examine the status and destination address for C1
this information will have been overwritten as the conse-
quence of an exception on C17. To avoid this situation,
C1 should be followed by another DSR operation no
sooner than on cycle 18.

9.2. Latency of DSR Operations

The latencies of register-to-register DSR operations, in
terms of CLK cycles, are determined according to the
following formulas:

o Latency (DIV32) =[14/N] + 3
o Latency (DIV64) =[28/N] + 3
O Latency (SQRT32) =[25/N]1+3
o Latency (SQRT64) =[54/N]+ 3

From these formulas, the latencies for the DSR opera-
tions with 1X and 2X DIVCLK, are as follows:

In these formulas, the symbols [] indicate the ceiling
(round up) function, and N is the factor by which the
DIVCLK frequency is greater than the CLK frequency; in
the case of 2 DIVCLK, for example, N =2. The number
calculated by the ceiling function gives the number of
cycles in the loop; the other three cycles are necessary to
latch operands into the DSR unit (one cycle) and to un-
load results through the multiplier (two cycles). The for-
mulas assume that bypassing is used; if not, the latency is
one cycle greater in each case.

The latency count is from the DSR instruction to the first
instruction that could use the result of the DSR opera-
tion as an operand. (This count includes everything nec-
essary to produce the result, including the generation of
guard and round bits.) For example, in the case of
DIV32 instruction, the result is written into the register
file in the second half of cycle 11. However, an instruc-
tion that uses this result may be clocked in on the rising
edge of cycle 11, using register file bypass. This instruc-
tion is denoted in the figure as C11; it could be any in-
struction, including another DSR operation. Therefore,
in this case the latency is from the rising edge of cycle 1
to that of cycle 11, which is 10 cycles. This reasoning
applies equally to the other cases.

Operation

Single-precision divide
Double-precision divide
Single-precision SQRT

Double-precision SQRT

Latency in cycles of CLK
1x DIVCLK 2x DIVCLK
17 10
31 17
28 16
57 30

Figure 51.

60

10. Temporary Latches

The purpose of temporary latches is to provide neces-
sary bandwidth for chained multiply-add operations.
The number of operands needed is four, yet the register
file provides only two, and the X or Y register provides
the third. The T-latches provide the path from the multi-
plier output to the ALU input for the fourth operand.
This is illustrated in figure 53.

The 3x64 has two temporary latches: TO and T1. Two
latches are needed in order to be able to write interrupt-
ible code; in applications where interruptibility is unim-
portant, only one T-latch need be used.

Since it is impossible to specify a T-latch without also
specifying a file register (in the DADD field of the code

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

word), the intermediate result is both latched in a T-
latch and written into the register file through the D port;
the timing for both activities is the same.

The use of T-latches is demonstrated with a sum-of-
products example. In the example, it is desired to per-
form

6
>, XiBi
=

Xi are data inputs through the X port and Bi are coeffi-
cients read from the B port of the register file.

Cycle Instruction
1 X1 X B1 — R3;
2 X2 X B2 — R4;
3 X3 X Bz — T0, R30; R29 + TO — R29:
4 X4 X Ba — T1, R31; R29 + T1 — R29;
5 Xs X Bs — T0, R30; R3 + TO — R3;
6 Xe X Bs — T1, R31; R4 + T1 — R4:
7 X7 X B7 — T0, R30; R3 + T0O — R3;
8 Xs X Bs —+ T1, R31; R4 + T1 — R4;
9 NOP
10 R3 + R4 — R5;
11
12

Comment

R3 has X
R4 has Xz

X B1
X Be

R3 has X
R4 has X2
R3 has Xi
R4 has X2

X B1 + Xa
X B2 + X4
X B1 + Xs
X B2 + X4

Xs X Bs
Xe X Bs

R5 has 2XiBi, i = 1 to 6

Figure 52. Example of the use of temporary latches

In this example, register R3 accumulates the sum of odd
products, and R4 even ones; registers R29-R31 are “gar-
bage” registers. In cycles 1 and 2, the first multiplica-
tions are performed, using ordinary multiplication op-
erations. Beginning with cycle 3, chained multiply-add
instructions are used. On cycles 3 and 4 only the multi-
plication is relevant; chained multiply-add instructions
are used to write the result into a T-latch and bypass it
into the ALU as an operand on cycles 5 and 6, respec-
tively.

In cycle 7, T-latch bypassing is activated when TO is used
as an operand in the addition while at the same time
being written with the result of the multiplication in cycle
5. In cycle 7, register file bypassing in register-to-register
operations is activated when R3 is used in the addition as
an operand while at the same time R3 is being written
with the result from addition in cycle 5. Note that oper-
ands X7, B7 and Xs, Bs are not used in this example to
calculate the sum, but are shown to illustrate that this

61

example can be extended. On cycle 8, R3 holds the sum
of odd products, and on cycle 10, R4 holds the sum of
even products. On cycle 10, the two registers are added,
and the final result is available on cycle 12,

The example shows that cycle 9 contains a NOP; of
course, another instruction (unrelated to the task at
hand) could be specified in this cycle.

T-latch bypassing is independent of the state of the By-
pass On bit in the status register (SR1s) and is always
enabled on chained multiply-add instructions.

Note that the TO and T1 latches are used on alternate
cycles to assure the interruptibility of this code. Differ-
ent registers R30 and R31 are used to assure that this
code is interruptible not only in the general sense but
also IEEE interruptible. See section 16 for more details.

The operation of the T-latches in this example is shown
in figure 54.

S
10. Temporary Latches, continued

The T-latches are used only as part of chained multiply- Bypassing of temporary latches cannot be disabled re-
add instructions operating only on single- and double- gardless of the Bypass On bit in the status register.
precision floating-point operands. Values in the T-

latches remain there until overwritten by a subsequent

chained multiply-add instruction.

D yC
X or Y Register File
Register T-Latches
A B
A Bus
B _Bus
\
Multiplier ALU

Figure 53. Temporary latch data path

62

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
10. Temporary Latches, continued

o UL LEUE UL RLEL L L L L
o LA~

s <X~~~

X1B1 + Xz2B2 +

N @‘ i iX:X: i i§. + Py @'
T ; OW@ 00 i
st I)

MUL/
STAGE 3

T-LATCHES |

ALU

meeaé!

* —— —— ——— ——— — — ——— — —— —— — ————

. —— —— ———— ——- —— — — t——— ———

|

!
STAGE 1 E |

: R S A VA O

I I I I

Q%XGE) i i‘(03X= C4 X Cs : C6 45 cs : c9 K c10

I I | | | | |
hee 7] e Vs VR Oa O On®

Figure 54. Chained multiply-add operation using temporary latches TO and T1 (assume two-cycle latency
mode and undelayed load)

63

11. Status Output

The 3x64 provides a 4-bit status output, Sa..o.

Source exceptions are delayed internally so that they are
signaled on the same cycle on which result exceptions
are signaled. This is true regardiess of the latency of the
operation. The exception signaled for one operation is
either source or result, never both; conflicts are resolved
according to priorities in figure 56.

The timing diagrams of the status output generation are
shown in figure 58, for the following three cases:

O Multiplier operation only (no concurrent ALU opera-
tion)

0 ALU operation only (no concurrent multiplier opera-
tion)

© Concurrent multiplier and ALU operations

The status of a DSR operation is generated following the
unload of the DSR result through the multiplier; it has
the same timing as that of a multiplier operation.

The state of the Sa..o pins remains unchanged until up-
dated by another operation.

Note that if an instruction is neutralized, stalled, or
aborted, its status is not provided on the S3..0 pins. (The
status indicated is 4 or EXT.POS.)

The status output codes and the priorities according to
which any conflicts are resolved—as well as the mne-
monics used—are listed below. Note that these status
outputs are not necessarily the same as the status infor-
mation stored in the status register upon register file
writes.

NRM Normalized number
EXT Exact

INX Inexact

UNRM Unrounded normalized number
UNF Underfiow

OVF Floating-point overflow
IOVF integer overflow

POS Positive

NEG Negative

NaN Not a Number

INV Invalid operation

DvZz Divide by zero

. (period) And

Figure 55. Status mnemonics

64

Sa..0 Status/Exception Priority
Decimal Binary

0 0000 Result is + 0 Lowest
1 0001 Result is - 0

2 0010 Result is + oo

3 0011 Result is — oo

4 0100 EXT.POS

5 0101 EXT.NEG

6 0110 INX.POS

7 0111 INX.NEG

8 1000 IOVF

9 1001 OVF
10 1010 UNRM.EXT

11 1011 UNRM.INX

12 1100 DNRM
13 1101 bvz*

14 1110 INV

15 1111 NaN Highest
* This code is not applicable to the ALU.

Figure 56. Status encoding and priority

11.1. Status Output for Compare Operations

The meaning of the Sa..o output for compare operations
is given in figure 57.

Ss..0 Result of compare operation
0 zero eq x=vy)
4 greater than gt (x >y)
5 less than It (x <vy)
15 unordered uord x?y)
Figure 57.

The timing diagram for the compare operation is shown
in figure 58.

Compare operations are executed by the multiplier. The
timing for status output of compare operations is the
same as that for the status of ALU or two-cycle latency
multiplier operations. For details on compare instruc-
tions, see section 17.7.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
11.1. Status Output for Compare Operations, continued

CLK 1 | 2 3 T 4 5 |
NI
c | | Multiplier-only Operation | |
41,.13
I | I I I I I I
| I] | | | I I |
MULTIPLIER _|_K| X X__IL ! ! !
| | | T | |
I | | | | I
S3..0 OUTPUT [[I | | I
| I | | | I
| | | | I | I | | I
T T T T T T T T T T
I | | I | I | I | |
| I 1 ' ! ' ' | |
Cut 13 ﬂ i : I ALU-only Operation l :
I | 1 | | I | | I
——CX — ||
| | | T I |
| | | | | " |
S3..0 OUTPUT I I | I I STATUS |
I | | | | T T —r— |
| | | | | | | | | |
| | l | | 1 | | l [
| I | | I | I | | |
I 1 I I I i i i |
c ' | Concurrent Multiplier and ALU Operations |
41..13 | |
| I 1 I | I | | I
MULTIPLIER __|_‘<| | X X >,_'_| ! : : I
| | I T | | | | | |
I | | ! | I | | | |
ALY __n__< X X >|_|_ I B
| I | | I | | | |
T :
Sa..0 OUTPUT | | | | | @% |
| | | I | I
] I I I | I |] | I
I | I I | | I | | I
| I | | | | | | | |
I A A
Cui 13 I I I ICompar'e Operlatuon l l :
| | | | | | | | |
I | | | I |
I |
| | | | | |
I | | | | I I | | I

Figure 58. Status output generation in two-cycle multiply latency mode

65

12. Status Register

The status register is used to specify the device’s mode
bits and to store status. It is used to recover from excep-
tions in a pipelined environment and for context switch-
ing.

When switching modes, the change takes place in the
very next cycle, potentially corrupting current computa-
tions; therefore no operations should be in progress.

12.1. Status Register Structure

The status register consists of twelve 8-bit registers
whose structure is given in figures 59 and 60. These reg-
isters are named SRNs, where N identifies one of the
twelve registers and ranges from 0 to 11, and the sub-
script s indicates the range of bits in the register, from 0
(LSB) to 7 (MSB).

BIT#
SR# COMMENTS
7 6 5 4 3 2 1 0]

SRO Multiplier FPEX- internal . Fast

Latency | Sticky 0 0 NEUT on| Rounding Mode Mode Modes

|IEEE

FPEX-
SR1 Software | Bypass on 1/0 Mode Modes
Underfiow | "7 Delay
SR?2 NaN INV Dvz DNRM OVF UNF INX IOVF Trap
EN EN EN CONTROU EN CONTROU EN EN Enables

SR3 NaN INV Dv2Z DNRM OVF UNF INX IOVF Sticky Bits
SR4 0 TDESTO MDESTO Destination
SR5 0 0 0 ADESTO Destination
SR6 ASTATO MSTATO Status
SR7 0 0 0 DIVDEST Destination
SR8 0 TDEST1 MDEST1 Destination
SR9 0 0 0 ADEST1 Destination
SR10 ASTATt MSTATH Status
SR11 FPEX- DSR

Taken lin progress{ FPCN Carry DIVSTAT Status

Figure 59. Status register structure

66

12.1. Status Register Structure, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

Field Name Values Meaning
SROg FAST MODE 0 IEEE
1 Fast
SRO, ROUNDING MODE 00 Round to nearest
01 Round to zero
10 Round to positive infinity
11 Round to negative infinity
SRO3 INTERNAL NEUT ON 0 Internal NEUT off (no internal NEUT source)
1 Internal NEUT on (causes one-cycle NEUT)
SRO0s RESERVED 00 Reserved, must be loaded as zero
SROg FPEX-STICKY 0 FPEX- pulsed (high true)
1 FPEX- sticky (low true)
SRO- MULTIPLIER LATENCY 0 Two-cycle multiplier latency
1 Three-cycle multiplier latency
SR1,4.. 1/0 MODE 00000-11111 Load/store modes, see section5.5.1.
SR1g FPEX- DELAY o] FPEX- undelayed
1 FPEX- delayed
SR1g BYPASS ON 0 Register file bypass disabled
1 Register file bypass enabled
SR1, IEEE SOFTWARE UNF 0.1 Software underflow bit, used by |EEE trap handlers
In non-lIEEE systems, should be loaded as zero
SR2, IOVF EN 0 Integer overflow exception disabled
1 Integer overflow exception enabled
SR2 4 INX EN 0 Inexact exception disabled
1 Inexact exception enabled
SR2, UNF CONTROL 0 Underflow result not rounded
1 Underflow result rounded
SR24 OVF EN 0 Overflow exception disabled
1 Overflow exception enabled
SR2,4 DNRM CONTROL 0 Denormalized inputs treated as zero
1 Denormalized inputs cause exception
SR2g DVZ EN 0 Divide-by-zero exception disabled
1 Divide-by-zero exception enabled
SR2g INV EN 0 Invalid operation exception disabled
1 Invalid operation exception enabled
SR2; NaN EN 0 Not-a-number exception disabled
1 Not-a-number exception enabled

Figure 60. Status register fields

67

12.1. Status Register Structure, continued

Field Name Values Meaning
SR3p IOVF 0 Integer overflow exception has not occurred
1 Integer overflow exception has occurred
SR3, INX 0 Inexact exception has not occurred
1 Inexact exception has occurred
SR3, UNF 0 Underflow exception has not occurred
1 Underflow exception has occurred
SR3; OVF 0 Overflow exception has not occurred
1 Overflow exception has occurred
SR3,4 DNRM 0 Denormalized input exception has not occurred
1 Denormalized input exception has occurred
SR3; Dvz 0 Divide-by-zero exception has not occurred
1 Divide-by-zero exception has occurred
SR3g INV 0 Invalid operation exception has not occurred
1 Invalid operation exception has occurred
SR3; NaN 0 Not-a-number exception has not occurred
1 Not-a-number exception has occurred
SR4,4 MDESTO 00000-11111 Multiplier destination address for operation 0
SR4, TDESTO Temporary latch destination for operation 0
00 T-latches not used as destination
01 T-latch destination is T,
10 T-latch destination is T,
SR4- RESERVED 0 Reserved, must be loaded as zero
SRS, . ADESTO 00000-11111 ALU destination address for operation 0
SR57. RESERVED 0 Reserved, must be loaded as zero
SR6, MSTATO 0000-1111 Muitiplier status for operation 0
SR6, ASTATO 0000-1111 ALU status for operation 0
SR74. 0 DIVDEST 00000-11111 DSR destination address
SR77. 5 RESERVED 0 Reserved, must be loaded as zero

Figure 60. Status register fields, continued

68

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

12.1. Status Register Structure, continued

Field Name Values Meaning
SR84. .0 MDEST1 00000-11111 Multiplier destination address for operation 1
SR8; 5 TDEST1 Temporary latch destination for operation 1
00 T-latches not used as destination
01 T-latch destination is T
10 T-latch destination is T,
SR8, RESERVED 0 Reserved, must be loaded as zero
SR94. .0 ADEST1 00000-11111 ALU destination address for operation 1
SR97 5 RESERVED 0 Reserved, must be loaded as zero
SR103,, MSTAT1 0000-1111 Muiltiplier status for operation 1
SR10, ASTATI1 0000-1111 ALU status for operation 1
SR115 DIVSTAT 0000-1111 DSR operation status
SR114 CARRY 0 Carry/borrow bit is zero
1 Carry/borrow bit is one
SR11g FPCN 0 Result of compare operation is false
1 Result of compare operation is true
SR11g DSRINP 0 A DSR operation is not in progress
1 A DSR operation is in progress
SR11, FPEX TAKEN 0 No enabled exception has occurred
1 An enabled exception has occurred

Figure 60. Status register fields, continued

12.2. Status Register Load/Store

Each of the twelve status registers can be loaded through
the X port and stored through both the X and Z ports.
The timing depends on the I/O mode (SR14..0). See fig-
ure 61. The bits within each register are not individually
addressable; it is possible to load/store only an entire
register at a time, one per cycle.

Status register loads occur through the most-significant
byte of the X port, Xa1..24. The other 24 bits on that port
must be set to zero.

The contents of a status register are stored simultane-
ously through the most-significant byte of the X port

69

(X31..24) and Z port (Z31..24). The other bits of the X
and Z ports, bits 23..0, are undefined. If a double-pump
store mode is in effect, the output is valid for the entire
length of time when both MS and LS halves of a corre-
sponding double-precision data word would be valid.
Status register load/store instructions are detailed in sec-
tion 17.

The following sections explain each of the twelve status
registers. Refer to figures 59 and 60.

12.2. Status Register Load/Store, continued

Car o LOAD
. STATUS delayed load

' Y
CLK 1 2 3
T
c LOAD Single- or double-
41..0 gle- or double-pump
STATUS/) | | | undelayed load
| | | |
| | | |
X INPUT | I . .
31..24 SRN | T 1 |
l | | |
|
| Single- or double-pump
|
|
|
|

—— —— s
— v w———e o —

X351, 24 INPUT
I

Delayed or undelayed store
(single-pump only)

: |
STORE |
Cat..0 STATUS I
|

|

|

X 31, 04 OUTPUT
Z 4, 24 OUTPUT

——— ——— —— — e —

Delayed-data store
(single-pump)

c STORE
41..0 STATU

|
X3y pg OUTPUT :
Z4y 2 OUTPUT l

Delayed-data store
(double-pump)

C STORE
41..0 STATUS

— s
— e w——

X31..24 QUTPUT
24, 24 OUTPUT

Figure 61. Status register load/store

70

12.3. Mode Registers: SR0 and SR1

These two registers are used to specify the modes in
which the 3x64 will be used.

12.3.1. FAST MODE

The 3x64 has two modes of handling operations with
denormalized operand inputs and operations that pro-
duce underflowed results. The FAST mode affects only
results: underflows are “flushed” to zero. Inputs and
outputs are decoupled, as shown in figure 66: the setting

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

12.3.4. FPEX STICKY

When an enabled exception is detected, the FPEX out-
put is asserted, and the FPEX TAKEN bit in the status
register, SR117, is set. In sticky mode, the FPEX output
stays asserted until the FPEX TAKEN bit is explicitly
cleared. This is done by loading SR11 with a new value,
such that SR117 = 0. In pulsed mode, FPEX output stays
asserted for one cycle only. See figures 70 and 71.

of the DNRM control bit (SR24) does not determine
whether underflowed results are flushed to zero; con- SR0o = 0 IEEE mode
versely, the setting of the FAST mode bit (SR00) does 1 FAST mode
not determine whether denormalized inputs are treated Figure 62. Fast and IEEE modes
as zero.
In this table “DNRM” refers to denormalized numbers
and “UNRM” to unrounded normalized numbers. Both SR02..1 = 00 Round to nearest
are defined in section 19. 01 Round to zero
In the IEEE mode, the denormalized operands and re- 10 Round to posrtlye |r.1f|r_1|t.y
. . 11 Round to negative infinity
sults can be handled, in system software, in a manner
consistent with the JEEE Standard For Binary Floating- Figure 63.
Point Arithmetic.
12.3.2 ROUNDING MODE SR0s = 0 INTERNAL NEUT off
All four rounding modes specified by the IEEE standard 1 INTERNAL NEUT on
are supported. Figure 64.
12.3.3. INTERNAL NEUT ON
If INTERNAL NEUT is on and an enabled exception oc- SR0s = 0 FPEX is pulsed, polarity
curs, then the operation portion (Cs1..13) of the current is positive true
instruction is neutralized and the entire code word
(Ca1..0) is saved on-chip in the code register and FPEX 1 FPEX is sticky, polarity
TAKEN bit (SR117) is asserted. is negative true
The SR03 bit has no effect on the I/O portion of the Figure 65.
instruction (C12..0) and it completes without delay. Re-
fer to sections 14 and 15.
Denormalized Number Denormalized FAST Underflowed
Control Input Mode Output
SR24 SR0o
Treated as O 0 UNRM and underflow exception
Treated as O 1 0
1 DNRM exception 0 UNRM and underflow exception
1 DNRM exception 1 0

Figure 66.

71

12.3. Mode Registers: SR0 and SR1, continued

12.3.5. MULTIPLIER LATENCY

The effects of multiplier latency mode are described in
section 7.

12.3.6. /O MODE

This five-bit field SR14. .0 specifies load/store modes. See
section 5.5.1 for the specific bit combinations that select
desired load/store modes.

12.3.7. FPEX DELAY

When an enabled exception occurs, two events always
happen: the FPEX TAKEN bit, SR117 is set, and the
FPEX output is asserted. The FPEX output is asserted
either at the end of the same cycle in which the excep-
tion was detected, or in the beginning of the following
one, depending on the FPEX delay mode. See figures 70
and 71.

If FPEX is in the undelayed mode, and an enabled ex-
ception occurs, the FPEX output will be asserted at the
end of the same cycle in which the exception was de-
tected.

If FPEX is in the delayed mode, and an enabled excep-
tion occurs, the FPEX output will be asserted on the cy-
cle following, that is, delayed with respect to, the one in
which the exception was detected. The effects of FPEX
delay are treated in section 15.

12.3.8. BYPASS ON

Register file bypass logic is activated if SR1s is asserted
and one of the following conditions occurs:

© CADD or DADD = EFADD on store (except on delayed
store)

AADD or BADD = EFADD on load

The destination address from an earlier instruction
equals the address for one of the operands of the cur-
rent instruction

EFADD of a delayed load instruction equals EFADD of
an immediately following store instruction (except de-
layed store). In this case, the data just loaded will by-
pass the register file and will be stored.

An undelayed load (data is supplied, say, through the
X port) and same-cycle store (except delayed store)
(data is driven out, say, through the Z port) both use
the same EFADD field of the code word. In this case,
the data loaded through the X port will be stored
through the Z port on the same cycle.

72

Note that the equality in the above conditions exists not
between the addresses of the same code word but with
respect to a given cycle. For example, assume that on
cycle 1 a multiply instruction is issued. In two-cycle la-
tency mode, it completes and the result is automatically
written into the register file in cycle 3. The write address
is specified by the DADD field of the multiply instruction
in cycle 1. Assume now that on cycle 3 an undelayed
store instruction is issued. Register file bypass logic is
activated if the address specified by the EFADD field of
the store instruction of cycle 3 is equal to the DADD field
of the multiply instruction of cycle 1.

C1 R1 x R2 —+ R3
C2 NOP
C3 Store R3
SR0O7 = 0 Two-cycle multiplier
latency
1 Three-cycle muitiplier
latency
Figure 67.
SR1s = 0 FPEX is undelayed
1 FPEX is delayed
Figure 68.
SR1e = 0 Register file bypasss is
disabled
1 Register file bypasss is
enabled
Figure 69.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

12.4. SR2 and SR3: Sticky Bits and Their Enables

SR3 contains eight sticky bits to signal the occurrence of
exceptions. The reason for having SR3 is to provide nec-
essary information to an exception handling routine.
SR2 contains trap enables that correspond to the sticky
bits in SR3. A sticky bit must be enabled for the corre-
sponding exception to be signaled by the FPEX output.
There is one exception to the previous statement: in
IEEE mode (SR00=0), underflow is signaled regardless
of whether it is enabled.

When an exception occurs, the corresponding bit in SR3
is set regardless of the trap enable bits (see figures 70
and 71) and remains set until it is cleared by loading SR3
with a new value. The DNRM sticky bit is handled differ-
ently. If DNRM Enable = 0, then the DNRM bit in SR3 is
never set, and DNRMs are treated as zero. Just exactly
when the SR3 bit is set is immaterial so long as it has
correct state by the time an interrupt handler uses it. It is
possible that on the same cycle, say cycle 3, a result ex-
ception from instruction C1 and a source exception
from a different instruction, C3, will both be detected,
and corresponding sticky bits set. Since a single opera-
tion may set either source or result exception, but never
both, any resulting ambiguities may be resolved in a trap
handler.

The FPEX output is not affected by the state of sticky
bits; for example, it cannot be reset by clearing the
sticky bits in SR3. Conversely, merely loading sticky bits
into SR3 will not cause the FPEX output to be asserted.
FPEX output is asserted only as a result of an enabled
exception. To reset FPEX output, FPEX TAKEN bit,
SR117, must be explicitly cleared.

73

12.4.1. CHANGING TRAP ENABLES

When changing trap enables, old status information in
MDESTO, MSTATO, MDEST1, MSTAT1, ADESTO, AS-
TATO, ADEST1, ASTAT1, TDESTO, TDEST1, DIVDEST,
DIVSTAT, and SR3 (see figure 59) in the status register
should be cleared prior to beginning operations in the
arithmetic units. Also, trap enables should be changed
only after all operations have completed. The reason for
this is to avoid changing trap enables in the middle of an
incomplete operation as this may cause unpredictable
results.

12.4.2. SR22 UNDERFLOW CONTROL

This bit controls the behavior of underflow in IEEE
mode (SR00=0). In FAST mode (SR0o=1) the under-
flow control bit is ignored.

12.4.3. SR24 DENORMALIZED NUMBER
CONTROL

This bit controls how denormalized numbers are treated
when received as inputs to an instruction.

If SR24=1, denormalized inputs cause an exception.

If SR24=0, denormalized inputs are treated as zero and
none of the following sticky bits is set: DNRM (SR34),
INX (SR31), UNF (SR32). For example, when SR24=0,
multiplying 1.0 and a denormalized number yields 0 and
neither the INX nor the UNF nor the DNRM bit is set.

CLK

12.4. SR2 and SR3: Sticky Bits and Their Enables, continued

Z
0
[
o
O
llllll e e s e e e s o et —— s e e e e e e e s e b 4 .IIII\\IIII'IIIIJ!
e | /
2 | 7 /
| ~ 7] 4 /
\ / 0 " ¥
/R / /
————— \\Illl.l ||||||||| ||~|I|.I“||VII\|\.|-|||
I~ e
! -
P
//l\ |~
\\\-I.lv//
13) j R \
7 N ~N |
IIIIIIIIII — e — —— Illll\lnlll lllll_.ll" — G T —— — R — — — S S —
\\ /
/] /
/ 4
o / /
/ /
/ el
F \
lllll —— N e s e e = ll:ll'.ll-ll“\nll Z ~t— —— o e s — . —— — e — -
// \ - o
m \ 17"‘.\\ W
0
— \\ ﬂ
w
T ek | e O de| =S
O —_—p———tr———1T-| — @
5 |
O
»
D D
= =
o ©
ped
2 z & a z &
> 0 0o X > Qo o x
- o N < w = < < w [<
w L w — > [g i > o o~
@ (0] (0] (0] x W X< w X > X< W X
- - WS Mg gx KE | @2 #a g% iz
C4 ,& N _& _m“U [THa] %E TR7) wo wo wnuw TR 7]

74

Figure 70. FPEX assertion for source and result exceptions (FPEX sticky)

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
12.4. SR2 and SR3: Sticky Bits and Their Enables, continued

T £
CLK 11 2 3 4 5
| l { |
c
41..8 ct] | I I
S R I
STAGE 1 : ci1 : : :
| | | | |
S
STAGE 2 + c1 f t
| Ne—o /] | I
I S I
STAGE 3 ; } 1 ' '
| \ | i__/\ | |
]] 1 ! 1
| \}’/'-F—‘\\\ | \ |
FPEX | /1 =~ ' 1
UNDELAYED | .| ~K ['
| V| AN | |
I | | I
\ ——h N\
FPEX | | | \ i |
DELAYED I \ T| : \\ } \ }
\
I \| | \.‘] |
SR3 | LN L/ \ { {
EXCEPTION BIT(S) J ! N } V| i
SOURCE EXCEPTION N\ | I I
1 ! S~/ T T
FPEX TAKEN 1 1 N~ 7/ I I
SR11, i | =" | .
1 [} 1 I I
| | [s N |
FPEX I |] L/ I
UNDELAYED 1 1 I [| N
| | | \ l N
I | I \ | N\
FPEX |]] \] AN
DELAYED I | [\ | | \
| | | \ | [\
l | | N 1 \
SR3 I |] N | \
EXCEPTION BIT (s)] I | N | \
RESULT EXCEPTION I I N : }
~
FPEX TAKEN l] L I ~_ 1/ J
SR11, I i = { \\}\ 7

Figure 71. FPEX assertion for source and result exceptions (FPEX pulsed)

12.5. SR4 Through SR11: Status and Destination Addresses

Since the multiplier and the ALU each contains three
stages, at any given time they may be executing six op-
erations. In addition, there may be a seventh operation
in the DSR unit. If an operation in either first stage
causes a source exception, INTERNAL NEUT can still
neutralize the instruction starting in the first stage. How-
ever, should the instructions in the second and third
stages generate result exceptions, it is too late to “kill”
them, and they will write to the register file. The same is
true for the result of the DSR operation.

Thus, up to five registers in the file may contain result
exceptions by the time an interrupt handler examines
status. See figure 75. Status registers SR4 through SR11
store addresses of file registers containing exceptions
and the associated status information which is needed to
recover from the exceptions and “fix up” the results.

The destination addresses for multiplier operations are
stored in the status register in registers MDESTO and
MDEST1. The status of these operations is also stored in
the status register, in registers MSTATO and MSTAT1.
Similar registers associated with the ALU are named
ADESTO, ADEST1 and ASTATO, ASTAT1. T-latch ad-
dresses are stored in TDESTO, TDEST1. (There is no
need for corresponding STAT registers because this in-
formation is already stored in MSTATO, MSTAT1. The
destination of divide/square root unit operations is
stored in the DIVDEST register, and the associated status
in DIVSTAT register. All of these registers are illustrated
in figures 59 and 60.

The status registers associated with pipelined arithmetic
units — the multiplier and the ALU — are arranged as a
two-slot queue (FIFO), as illustrated in figure 76. Every
time the multiplier writes to the register file, the follow-
ing status register updates take place:

Current multiplier

destination and status - MDEST0O, MSTATO

MDESTO, MSTATO MDEST1, MSTAT1

—

Figure 72.

76

Whenever the ALU writes to the register file, the status
register is updated similarly:

Current ALU
destination and status — ADESTO, ASTATO

ADESTO, ASTATO — ADEST1, ASTATH

Figure 73.

A simple example is illustrated in the timing diagram of
figure 77.

The register set associated with the multiplier is com-
pletely independent from that associated with the ALU
or the DSR unit; therefore, the timing of their updates is
independent. For example, MDEST0, MSTATO update
and ADEST0, ASTATO update do not have to be from
instructions that occurred in the same cycle. The timing
of T-latch update is the same as that for the multiplier,
since a T-latch address can be specified only if a register
file address is also specified.

If both the multiplier and the ALU are writing to the
register file simultaneously, both queues are advanced.

The foregoing discussion implies that the multiplier and
the ALU status information may be out of sync in time.
For example, the last multiplier operation may have oc-
curred several cycles in the past, and that operation
caused no exception. Its destination and status are
stored in the status register. Following that operation,
only ALU instructions were executed. When one of
them causes an exception, and an exception handler ex-
amines the contents of the status register, it will find the
destination and status from the last multiplier operation
and the destination and status from the current ALU
operation which caused the exception. The interrupt
handler would look at trap enables as well as status and
will determine that the exception was caused by the cur-
rent ALU operation, and that the old multiplier result is
valid. If the multiplier operation did have an exception,
the FPEX output would have been asserted at the time
the operation was being executed.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

12.5. SR4 Through SR11: Status and Destination Addresses, continued

Code

Decimal

WN = O

~NoOObh

8
9
10
11

12
13

14
15

enabled.

the ALU.

Binary

0000
0001
0010
0011

0100
0101
0110
0111

1000
1001
1010
1011

1100
1101
1110
1111

* This code is reserved

Status

NRM.EXT.32
NRM.INX.32
UNRM.EXT.32
UNRM.INX.32

OVF.32

*

*

NRM.EXT.64
NRM.INX.64
UNRM.EXT.64
UNRM.INX.64

OVF.64
OVF!
UNF2
IOVF3

! This status occurs in the ALU upon
F64 — F32 operation.

2 This status occurs in the ALU upon
F64 — F32 operation if the underflow trap is

3 This status occurs upon integer operations in
the Multiplier and Float — Fix operations in

Figure 74. Status encoding

77

When changing trap enables, one must be careful to first
clear old status information. Before clearing it, this in-
formation should first be stored and examined for use-
fulness.

Figure 74 lists multiplier, ALU and divide/square root
unit status codes which are used to update MSTAT,
ASTAT, and DIVSTAT registers. These codes are identi-
cal for all three arithmetic units except for the last three
codes. The mnemonics used in this figure are defined in
figure 55.

For example, UNRM.INX.64 means that the result of an
operation is a 64-bit unrounded normalized floating-
point number which is inexact.

12.5. SR4 Through SR11: Status and Destination Addresses, continued

CLK _f1 2 7 8 9 10 11 12 13

w @O—O-O-D-E-0-O-0

e
|
|
|
\ | | |
DSR —|—<_—_X DSR LOOP X UNLOAD = % I
| | T T | T T @ | { |
| | | | | | | | I]
REGISTER | | | | | | |
FILE T T T I T c7 cs ¢ 1 T
e I ! RN ! | I
auistace 1 | LN/ O G L L
— t t c7 cs 3 4 t t }
| | | | [| | | | |
| | | | | | | | | [
| | | | | | | | | |
ALU/STAGE 2 —J } } c7 cs } } | —
| | | | | | | | | |
| | | | | | | | | |
I | | | | | | | | |
ALU/STAGE 3 —1]] 1 c7 cs | 1 I 1
| | [| | I | | |
| | | | | I | | | |
A S e o N1 N N N
MUL/STAGE 1 —| l @_@ I l I I |
| | I | | | |
| | | | |
MUL/STAGE 2 ' ' | ' !
] 1 ! ! T 1
			I	
MUL/STAGE 3 —4 } cs } } H ;				
	[]	
i T N Lo
(UNDELAYED) | | N | | l i
TO SEQUENCER | 1 | ‘ .

| | I c10 neutr.ahzed.' but C1 writes
NEUT- y 1 1 to the register file anyway
INPUT
FROM I I I V\ | |]]
SEQUENCER = : :]I : : I
INTERNAL t } t { } -
NEUT I i :

] I

— — e — e — e ——— e —— — — ———— ——

\ ! /
| C9 neutralized internally

Figure 75. Up to five exception results may be stored in register file by the time interrupt handler examines
status

78

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
12.5. SR4 Through SR11: Status and Destination Addresses, continued

Multiplier Multiplier T-latch ALU ALU
current current current current current DSR DSR
destination status destination destination status destination status
) 4 Y A A Y \ i Y
[mpoesTo | | mstato | [voesto | || [[acesto]| [‘astato] || [oivoest] [oivstat]
| moest1 | | mstati | [voesti | || [(apesti] [astati]
Multiplier information ALU information DSR information

Figure 76. Operations’ destination/status information and their storage in the status register

79

12.5. SR4 Through SR11: Status and Destination Addresses, continued

6

CLK] 2 3 4 5

C41..0 c2 c3 C4 Ccs :

T I I

I i N e i i

ALU/STAGE1 _;_@_@ s 4 : }
B e
| | | | I | I

ALU/STAGE2 : Ji(c1 c2 X cs } : :
T =t et S

ALU/STAGES3 | | o1 2 s I |
| I | |
| | | | | | I
1 1] 1 1 i

REGISTER ! | \y_\' \5/_\‘I S/—\l !

Wi l | A I N e [
]]] | |]
— 7~ |

MUL/STAGE1 i J:-\ ca ca i
| { {
I

MUL/STAGE2 : :
| :

MUL/STAGE3 —1 o1 2 s |
| I
! Nn_/ N/ !
) | i

MSTATO/ MDESTO | { .

2

(SR6, /SR4, o |
|

|
MSTAT1/ MDEST1_|

(SR10, /SR8,)l

JI0I0

ASTATO/ADESTO

(SR6, 4/SR5,)

{ 2 {s Y 4
—
|

ASTAT1/ADEST1

|}
(SR10, ,/SRI 4)|
|

o
Sl

2
S

2
S

?
L NUC

C1: A1 XB1 = R1, X1+ Y1 =+ R2
C2: A2XB2 — R3, X2 + Y2 — R4

Figure 77. Result status update in the status register

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

12.5. SR4 Through SR11: Status and Destination Addresses, continued

12.5.1. SR114: THE CARRY BIT

The carry bit is provided for implementation of multi-
precision integer operations, as shown in the example
below.

The carry bit is updated only as a result of the following
integer operations (in the following A’ = not A):

Add (A + B)

Add with carry (A + B + Carry)
Subtract (A’ + B + 1)

Subtract with borrow (A’ + B + Carry)

o}
@
0
o
O Integer negation (132’ + 1)

O Integer with carry (I32 + Carry)

C Integer negation with borrow (132’ + Carry)

Any instruction that uses carry (or borrow) obtains it
from SR114. This bit may also be pre-loaded with a
known carry value by loading SR11.

The state of the carry bit is preserved until changed by a
subsequent operation. The timing of carry bit update is
given in figure 78. Even though there is not a separate
carry bit output pin, the carry information may be ob-
tained by using the store SR11 instruction.

EXAMPLE
A 64-bit integer ADD may be implemented as follows:

Add

NOP

Add with carry, store integer
NOP

Store integer

In this example, the NOPs may be replaced by 64-bit
integer operations which are interleaved with the ones
shown (however, this will produce uninterruptible
code).

81

12.5.2. SR11s: FLOATING-POINT CONDITION
(FPCN)

Floating-point condition is updated as a result of 32-bit
or 64-bit compare operations only; it stays unchanged
until updated by the next compare instruction. In addi-
tion to a bit in the status register, the 3x64 provides an
FPCN output pin. FPCN timing — both the status register
update and the output pin update — is shown in figure
79. FPCN is high true. See also section 17.7.

12.5.3. SR11s: DSR OPERATION IN PROGRESS
(DSRINP)

The DSRINP bit is used to indicate that a divide or a
square root operation is in progress. This bit is set on the
third cycle after the DSR instruction is clocked in. It is
cleared automatically in the cycle preceding the one in
which the DSR result is written into the register file.

Note that regardless of the value loaded into the DSRINP
bit by the load SR instruction, on the next cycle this bit
will automatically be updated to indicate whether a DSR
operation is in progress. For more details, see section 9.

12.5.4. SR117: FPEX TAKEN

The FPEX TAKEN bit is asserted if an enabled exception
occurs. It is always set two cycles following the one in
which the exception was detected. See figures 70 and 71
for timing information. Just exactly when the SR117 bit
is set is immaterial so long as it is set by the time the
interrupt handler is ready to use it.

This bit remains set until explicitly cleared by loading
SR11 such that SR117 = 0. Clearing this bit is also the
only way to reset the FPEX output, when in sticky mode.
Conversely, setting this bit by loading SR11 such that
SR117 = 1 asserts the FPEX output.

This bit is not affected by the state of SR3.

12.5.5. EFFECT OF LOGICAL OPERATIONS ON
STATUS REGISTERS

None.

12.5. SR4 Through SR11: Status and Destination Addresses, continued

\ CARRY 1

CARRY SR11,

CLK | 1 2 3
I —1 |
C41..0 c1 : c3 :
| [|
] /—\}] |
STAGE 1 I c1]]
S N R
| V—\l |
STAGE 2 : c1 :
N
STAGE 3 l 1 |
: N
|
l
|
|

— e e i c— — e a—

C1: Add
C3: Add with carry

Figure 78. Timing of carry bit update

82

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
12.5. SR4 Through SR11: Status and Destination Addresses, continued

CLK 1 T
Ca1 o < o1 > {) /sToRe\ STOR
|

o]

N

3

\ / SR11 SR11

STAGE 1 ___g__@

hg

1Tt

_[g

|

|

|

|

|

|

|

| | |

| | | |

| !/ | |

STAGE 2 } ¢ X c2 |
| N | |

I - :

STAGE 3]] o1 c2 |
N O e

| | 1 1 |

FPCN | ./ FPCN FPCN [
OUTPUT | |\ of¢ of c2 I
| | T I |

| | | I |

SR11 I | V eeon X FPCN !
5 | | |\ of C1 of C2 |

| | | | |

Note: Both C1 and C2 are compare instructions

Figure 79. Timing of floating-point condition update

83

13. NEUT-, STALL-, and ABORT-

NEUT-, STALL-, and ABORT- inputs are provided to
“kill” or to eliminate the effects of respectively the cur-
rent instruction, the next instruction, or both (see Glos-
sary, section 20, for the definition of current and next
instructions).

13.1. NEUT- INPUT
When NEUT- is asserted, writing is inhibited to:

© the register file, except for loads in undelayed load

mode

the X and Y registers, except for loads in undelayed
load mode

the temporary latches

the status register, except for status register loads in
undelayed load mode

the code register, except when there is an exception
on the same cycle, see section 14.3

When NEUT- is asserted, outputs corresponding to the
instruction that has been neutralized have the following
values:

O Ss3..0 has the status of EXT.POS
section 11

(0100b), see

© FPCN retains its previous value, see section 12.5.2

0 in delayed FPEX mode, FPEX it is not asserted

O in undelayed FPEX mode, FPEX output due to source
exceptions is erroneously asserted for one cycle (see
figure 80) and then de-asserted

Note that assertion of NEUT- does not inhibit any stores,
except single-pump delayed-data store. (Stores are in-
hibited by internally tri-stating output ports.)

13.2. STALL- INPUT

When STALL- is asserted:

O writing to all registers is inhibited

O all stores are inhibited by internally tri-stating output
ports

When STALL- is asserted, the outputs corresponding to
the instruction that has been stalled have the following
values:

O Sa..o has the status of EXT.POS (0100b)
O FPCN retains its previous value

O FPEX remains unasserted, regardless of FPEX modes

CLK

C41..0

NEUT- or ABORT-
INPUT

~

C1 has a source exception; for example, a NaN

FPEX STICKY

UNDELAYED
OUTPUT

FPEX PULSED

UNDELAYED
OUTPUT

FPEX

DELAYED
OUTPUT

___._____j_E____

|
I
|
!
1
I
I
1
|
|
]
1l
i
|
|
|
|
|
|
1

- —— e ————— ———— — —— ————

Figure 80. The effect of NEUT- or ABORT- on the current cycle on the FPEX output

13. NEUT-, STALL-, and ABORT-, continued

13.3. ABORT- INPUT

When ABORT- is asserted, its effect on the current in-
struction is identical to the effect of the NEUT- signal,
and its effect on the next instruction is identical to those
of the STALL- signal.

Specifically, when ABORT- is asserted, writing is inhib-
ited to:

O the register file, except for current-cycle loads in un-
delayed load mode

O the X and Y registers, except for current-cycle loads in
undelayed load mode

O the temporary latches

O the status register, except for current-cycle status reg-
ister loads in undelayed load mode

O the code register, except when there is an exception
in either the current or the next cycle (see sec-
tion 14.3)

When ABORT- is asserted, outputs corresponding to the
instructions that have been aborted have the following
values:

© Sa..o has the status of EXT.POS (0100b)
O FPCN retains its previous value
O in delayed FPEX mode, FPEX it is not asserted

O in undelayed FPEX mode, FPEX due to source excep-
tion on the current-cycle instruction is erroneously as-
serted for one cycle (see figure 80) and then de-as-
serted

85

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

Note that assertion of ABORT- does not inhibit current-
cycle single-pump undelayed or delayed stores or dou-
ble-pump delayed-data stores.

13.4. TIME-PUSHED PIPELINES

None of the NEUT—-, STALL-, or ABORT- signals stops
the pipeline, that is they do not internally stop CLK or
DIVCLK. The 3x64 has a time-pushed, as opposed data-
pushed, pipeline. When STALL-, NEUT-, or ABORT- is
asserted, the pipelines continue to advance. Using figure
81 as an example, instructions C1 (a 64-bit divide) and
C2 (a two-cycle latency multiplication) do complete and
do update the register file and the status register even
though NEUT-, STALL-, or ABORT- was asserted on cy-
cle 3, prior to the completion of instructions C1 and C2.
For details on the effects of STALL-, NEUT-, and
ABORT- on the code register see section 14.3.

13.5. INTERNAL NEUT SIGNAL

The INTERNAL NEUT signal is asserted internally if it is
enabled (SR0s = 1, see section 12.3.3) and an enabled
exception occurs. The INTERNAL NEUT signal has the
same effect as the NEUT- input except since INTERNAL
NEUT signal is a consequence of a floating-point excep-
tion, it does not:

O inhibit any I/O (load/store) operations

O inhibit updating of source exception status bits SR37. .4
(NaN, INV, DVZ, DNRM, see section 12.4)

0 affect FPEX output or FPEX TAKEN status bit (SR117,
see section 12.5.4)

O inhibit writing of the code register

13. NEUT-, STALL-, and ABORT-, continued

CLK 1 2 3 4 5 | l I 17

18
I I | I I
I I I I |
Cat.0 | | I | |
DIV 64 MUL | | | | !
. ' I | NEUT- kils C3 * | | I
N R AL AN I\ | | STALL- kils C4 | | |
INPUT | I I \ | ABORT- kills C3 and C4 | I |
NN T A LA
BiE o En | L/ | | L /N
WRITE | I | I |
NN A A
STATUS
REGISTER / ' (> L | I /;\l
UPDATE I : I : I
] L] L]

|

Figure 81. Source exception on C1

86

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

14. Code Register

The purpose of the code register is to “remember” the
last instruction issued before an enabled exception oc-
curred, so that it can be re-executed as part of an inter-
rupt service routine that would deal with the cause of the
interrupt. See figure 82.

14.1. Organization

The 42-bit code register consists of five 8-bit registers
and one 2-bit register. See figure 83. The re-execute de-
coder controls the multiplexer that selects the instruc-
tion to be executed: the one on the code input or the

87

current contents of the code register. There is an op-
code for the re-execute function, see section 17.15.2.
14.2. Operation

The code register is written on every cycle unless:

O STALL-, ABORT-, or NEUT- has been asserted. See
sections 14.3 and 15

O the instruction is a load/store code/status register or
re-execute instruction

O FPEX TAKEN bit is set (SR117 = 1)

14.2. Operation, continued

Source Exception

CLK 1 2 3 4 5 6 | 7

41..0 C1

CODE
REGISTER

S e

FPEX I
UNDELAYED the code register
OR

FPEX
DELAYED

I

| C2 source exception.
| C2 remembered in

|

i

INTERNAL
NEUT

e ——— i ———— ————— ————
——— e e St ot o e . e e i, e . s it s e oo —

— — e —— i — —— —— ———— ———— ——— o c—

- — e —— e . —— -

7

Result Exception

IS =
CODE c
REGISTER | N\ \ 1 X c2 X c3 X 04/ X c4
| | | | | i 1
| | |] I C2 result exception.
FPEX | | | | | C4 remembered in
UNDELAYED T 1 T | ttje code reglster.
| | | | } { {
OR l ! | | | |
ey ! ! ! ! | |
			4		
INTERNAL | | } | | f |
NEUT l I : l \ l| / l I

Figure 82. The purpose of the code register is to remember the last instruction clocked in before an excep-
tion occurred (INTERNAL NEUT is on)

88

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

14.2. Operation, continued

Csi.0 Xa1. .24 Z31..24
Tri-s, Tri-s,
Store Store
Logic Logic
8 3
Other giatus/Code Other
sources us sources
of store of store
Stor
Re-execute] L, e
Decoder A 42
8
A 42
A A Y MUX
MUX
\
Code word
+—» executed Load
by the chip Tri-state
P &Y
, NOP W
12172 2 NOP
8 Y8 88 s /8 A8 L8 A8 L8 p &Y
> mux | NOP
L--—MU)< NOP
8
P MUX l I NOP
8
P MUX l ¥ NOP
8
»l
> MUX | [7‘7
MUX |
//2 /’8 /IB /’8 /’8 '8
\
CR41. .40 CRag. 32 CR31. .24 CRy3. .16 CRys. g CRy. .7
' 2 & &) &) 7z V8
1 A A A A A
\ \ _ _ 42

Figure 83. Code register

89

14.3. The Effects of STALL-, NEUT-, and ABORT- on the Code Register

Internally, the loading of the code register with the in-
struction to be remembered is delayed by one cycle rela-
tive to the clocking-in of this instruction at the code
port. This provides the ability to automatically replace
the code register with a NOP if the instruction to be re-
membered happens to be stalled, neutralized, or

aborted.

14.3.1. SOURCE EXCEPTIONS

If it turns out that there is a STALL- or ABORT- input at
the rising edge of the instruction that would cause a

source exception, or if there is an ABORT- or NEUT-
input at the next rising edge, then the code register re-
tains its previous value and the FPEX output remains un-
asserted. See figure 84. The reason for this behavior is
that the purpose of these control inputs is to “kill” C2.
This has two implications. First, the fact that C2 may
have had any source exceptions is irrelevant; therefore
FPEX remains unasserted. Second, since C2 was not
meant to be executed in the first place, it is not meant to
be re-executed, and therefore need not be remembered
in the code register.

CLK

C41..0

CODE
REGISTER

FPEX DELAYED
OUTPUT

STALL-
INPUT

ABORT-
INPUT

NEUT-
INPUT

C2 would have had a source exception if C1 were not stalled, aborted, or neutralized

1 2 3 4 5 [
C1 ‘, c2 ,‘ ‘, Cc3 ,‘ “ C4 ‘, ‘, Ccs ‘,
I | I | I
} K C1 C1 :
| I I [|
I I I I I
I | I | |
1 | 1 1 |
[I [I |
I ! I | I
——t————— | ———————— +———— ————
I () I [|
l ' ' : {
B N e e e
| ' = |
— L | _— A
[| NS I I
I | | [!

Figure 84. Source exception on C2 in conjunction with one of the STALL-, ABORT-, or NEUT- inputs

90

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
14.3. The Effect of STALL-, NEUT-, and ABORT- on the Code Register, continued

14.3.2. RESULT EXCEPTIONS are meant to “kill” instruction C3, and FPEX output is

. . . the result of an exception on C1. The destination ad-
Refer to flgur.e 85. If it turns out that there is a STALL- dress and status of the result of C1 have been saved in
or ABORT- input at the rising edge of cycle 3, or a : g w e .

- the status register to be “fixed up” (in a trap handler);
NEUT- or ABORT- at the rising edge of cycle 4, then the hen the handler re-executes the instruction in the code
code register gets written with a nop. FPEX output, how- w

. , . . register, it gets to re-execute a nop).
ever, is asserted, because in this case the control inputs cgiste & P)

CLK 1 2 3 4 5 6 7 I__

| | |
N
CODE / ci X c2 X NOP KNOP X NOP
| | |
|
|
|
|

REGISTER

S s

)
|
| |
[|
INTERNAL | I
NEUT |] |
| |
| I | |
FPEX | | I |
DELAYED } t t t
OUTPUT [I I 1
| | | |
|] | |
STALL- ___L____J____\I —_ L _.
INPUT I I L/ I
| | 4 | |
I R :
EITHER OR
e S It N R N RS i
| | A S I
| | | | I
SR S S |
NEUT- el J_ e b
INPUT | [| NS | [
i | | T |

C3 is stalled, aborted, or neutralized when C1 has a result exception

Figure 85. Result exception on C1 in conjunction with one of the STALL-, ABORT-, or NEUT- inputs

91

14.4. The Effect of FPEX TAKEN on the Code Register

Once FPEX TAKEN bit (SR117) is set by an exception,
further INTERNAL NEUTs and writing to the code register
are inhibited, until this bit is cleared. See figure 86. Sub-
sequent exceptions — and there can be one more in the
multiplier, one more in the ALU, and one in the divide/
square root unit — do set sticky bits and update the

status register with destination addresses and status in-
formation, just as the instruction that caused the excep-
tion, but they do not update the code register or gener-
ate INTERNAL NEUT. The relevant state information
should be saved before resetting the FPEX TAKEN bit.

CLK

C41..0

CODE
REGISTER

INTERNAL
NEUT

FPEX
DELAYED
QUTPUT

ABORT-

INPUT

NEUT-

INPUT

source
exception

FPEX TAKEN

result

|
]
|
I
exception |
|
1
|

y r‘
4 5 6 7
I
l
|
i
|
|
|
>|
I
|
I
|
|
1
I
|
i
|
|
|
|
|
|
i
|
!
|
I

Figure 86. Several exceptions in a row

92

14.5. Code Register Load/Stores

Code register loads occur through the X port. The load
code register instruction, like other loads, supersedes
any other attempts to write to the code register. The tim-
ing of the load instruction corresponds to whatever load
mode is in effect provided that the data is presented on
the rising edge of the clock.

Stores occur simultaneously through both the X and the
Z ports. The timing of the store code register instruction
corresponds to whatever store mode is in effect.

For code register loads, the most-significant byte of the
X port is used, X31..24. The other 24 bits on that port
must be set to zero. The contents of the code register are
stored simultaneously through the most-significant byte
of the X port (X31..24) and Z port (Z31..24), and the other
bytes are set to zero. The code register is loaded and
stored in 8-bit bytes. These are physical bytes, not logi-
cal bytes shown in the code word format in figures 4, 95,
and 96 — see the next section. When loading the most-
significant byte, its six most-significant bits are “don’t
cares”; when storing it, these bits are set to zero. The

93

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

code register and status register load/store instructions
are identical in timing, see figure 61. These instructions
are detailed in section 17.16.7. Note that on code regis-
ter loads and stores, bits Ciz2..0 {(XCNT, YCNT, ZCNT)
must be set to zero.

14.5.1. CODE WORD FORMAT AND THE
PHYSICAL CODE REGISTER BITS

In this document, the term “code word” is used in the
sense shown in figures 4, 95, and 96. These figures show
that each multibit field is logically contiguous. Inter-
nally, however, the physical code register bits corre-
sponding to some of these fields are not contiguous.
Some applications — primarily IEEE trap handling rou-
tines — need to manipulate the contents of the code reg-
ister using code register load/store instructions. Since
these instructions operate on physical code register
bytes, it is important to know the correspondence be-
tween the physical bits and bytes of the code register and
the logical format of the code word, as well as device
pins. Figure 87 provides this information.

14.5. Code Register Load/Stores, continued

Code register Code register Bits of the Pin name Code word bit
byte bit X and Z ports
0 0 24 EFADDO C8
1 25 EFADD1 Cc9
2 26 EFADD2 c10
3 27 EFADD3 Cit
4 28 EFADD4 C12
5 29 DADDO C13
6 30 DADD1 C14
7 31 DADD2 Cc15
1 8 24 DADD3 c16
] 25 DADD4 c17
10 26 AADDO C28
11 27 AADD1 c29
12 28 AADD2 C30
13 29 AADD3 C31
14 30 AADD4 Cc32
15 31 CADDO c18
2 16 24 CADD1 c19
17 25 CADD2 Cc20
18 26 CADD3 c21
19 27 CADD4 Cc22
20 28 FUNCTO Cc37
21 29 XCNT1 C5
22 30 XCNT2 cé6
23 31 XCNT3 c7
3 24 24 XCNTO c4
25 25 ZCNT1* C1
26 26 YCNTO* c2
27 27 YCNT1* C3
28 28 FUNCT1 C38
29 29 FUNCT2 C39
30 30 FUNCT3 C40
31 31 FUNCT4 C41
4 32 24 BADDO c23
33 25 BADD1 C24
34 26 BADD2 C25
35 27 BADD3 C26
36 28 BADD4 c27
37 29 ZCNTO* co
38 30 ABIN C35
39 31 AAIN C36
5 40 24 MBIN C33
41 25 MAIN C34

* These pins are present in the 3364, but not in the 3164. In the 3164, they must be loaded as
zero, otherwise unpredictabe results will be produced.

Figure 87. Correspondence between code word pins and code register bits

94

15. Exception Handling

The 3x64, in conjunction with appropriate software,
provides the necessary functionality to handle the full
range of IEEE exceptions in pipelined environment.

When exceptions occur it is necessary to stop the system
“in time.” In time means that all the information neces-
sary to “fix up” the exception (operand addresses on
source exceptions and result addresses and status on re-
sult exceptions) is available, that is, it has not been over-
written as a result of subsequent instructions.

The 3x64 is designed to handle exceptions in two types
of systems: systems that can back up and re-execute an
instruction, and systems that cannot. In terms of figure
88, a system can back up if both the current instruction
(C2) and the next instruction (C3) can be re-executed.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

A system cannot back up if only the next instruction
(C3) can be re-executed.

Systems that can back up can be stopped one cycle later
relative to systems that cannot. These systems can there-
fore use delayed FPEX, which yields a faster cycle time.
Exception handling with delayed FPEX is discussed in
section 15.1.

In order to be stopped in time, systems that cannot back
up must use undelayed FPEX, which results in longer
cycle time. Exception handling with undelayed FPEX is
discussed in section 15.2.

In this section, it is assumed that the INTERNAL NEUT
mode bit is on (SR03 = 1) and that a floating-point in-
struction is initiated on every cycle.

CLK

3

C41..0

INTERRUPT

c2

o
=

(STALL-
ABORT-
NEUT-)

— s e

— e —

Systems that can back up: both C2 and C3 can be seamlessly re-executed. Delayed FPEX.
Systems that cannot back up: only C3 can be re-executed. Undelayed FPEX.

!
1
I
I
|
I
|
|

|
\l
T

Figure 88. System types

95

15.1. Delayed FPEX (SR1s

1)

Systems that can back up use this mode, which yields a
faster cycle time.

15.1.1. SOURCE EXCEPTIONS

If the INTERNAL NEUT mode bit is on and an en-
abled source exception occurs on instruction C1 (see
figure 89), the INTERNAL NEUT signal inhibits writing of
the code register from code port, so that C1 remains in
the code register.

The detection of the exception also sets the FPEX
TAKEN bit in the status register (SR117) and asserts the
FPEX output pin on the next cycle.

The FPEX output should be ORed (for one cycle only)
into a signal that can back up the system by one cycle. In
this case, the ABORT- input is an OR of the FPEX output
and all other causes of abort. This function is imple-
mented externally. The ABORT- input eliminates the ef-
fects of the current and the next instructions; C2 and
C3, respectively. Figure 89 also shows how to use the
re-execute code register instruction to restore normal
code flow following an interrupt.

CLK 1

C41..0

CODE
REGISTER

INTERNAL

NEUT

FPEX
DELAYED

OUTPUT
(PULSED)

ABORT-

INPUT

NEUT-
INPUT

FPEX- TAKEN
SR11,

e s e —— i —— —— ———— — — > —— —— ——— — ——

Restoring normal code flow: |(N-2): clear sticky bits
I(N-1): clear FPEX TAKEN
I(N)

. re-execute code register

Figure 89. Source exception on C1

96

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
15.1. Delayed FPEX (SR1s = 1), continued

15.1.2. RESULT EXCEPTIONS In this case, the exception information is stored in the
This case is similar to the source exception case, with 3x64 status registers, allowing the handler to correct the

INTERNAL NEUT signal generated at the time of the ex- ©<ception on C1 and any potential exception on C2.
ception, in cycle 3. See figure 90.

/
CLK 1 2 3 4 5 6 7 8 |__

C41..0 c2

N

doef 1L Se——3g]
~N
N

CODE
REGISTER

Cc1 c2

KT T

— N

INTERNAL
NEUT

FPEX
DELAYED
OUTPUT

ABORT-
INPUT

NEUT-
INPUT

FPEX
TAKEN
SR11,

— — ——— - ———— e —————— — ——— ——————— ————

—— e e e e e e e e —_.—_._—._—_—____X___._

— e —— — — e ——— —— e ————r— ———— ——
— —————— ————— o —————— ——

Figure 90. Result exception on C1

97

15.2. Undelayed FPEX (SR1s = 0)

Systems that cannot back up use this mode.

In this mode, when an enabled exception is detected,
the FPEX output is asserted on the same cycle. In other
respects, this case is similar to the delayed FPEX case.

Since FPEX output has to be generated on the cycle of
the exception, the cycle will be longer than in the de-
layed FPEX case; it will be determined by FPEX output
delay, set-up time, and propagation delay of an outside

device to which FPEX is an input. The FPEX output
should be used to generate the STALL- input by ORing it
with other causes of stall. See figures 91 and 92. The
STALL- input will “kill” subsequent instructions but it
cannot back up the system.

Undelayed FPEX results in simpler design and it does
not require a sequencer that can back up. This is
achieved at the cost of potentially longer cycle time,
compared to the delayed FPEX case.

L

w
[6,]

P
)

(03]

A

CLK 1 2
Ca 0 ct { c2)

| |

| |

O\
CODE] 4 c1
REGISTER I N\

| |

I
INTERNAL ;
NEUT |

| |

| |
{:JE%)I(ELAYED } \ !
OUTPUT [N\

| |

| |
STALL- |
INPUT : \| /

e

<
|
|
I
|
|
I
|
1
I
|
|
|
1
L
L]
|
1
]
|
i

Figure 91. Source exception on C1, undelayed FPEX

98

3164/3364

64-BIT FLOATING-POINT
DATA PATH UNITS
November 1989

15.2. Undelayed FPEX (SR1s = 0), continued

CLK

——— ——— e — . —————— —— — —— ——— ——

— e e— s it [e — e i Y . —] o——a—

4 3 b SE e
Q M
AN
i A RN~ N N G W
~N
o
N
4 8 b S A
N
\/\
p m llllllllllllllllllllllllll
2
AT
© Em O <7]
g A s
o ot zZz L>0 nZ

Figure 92. Result exception on C1, undelayed FPEX

99

16. Interruptibility and Disallowed Code Sequences

The definition of interruptibility is the ability to suspend
the execution of the current program, execute a se-
quence of unrelated instructions (known as an interrupt
handler), and to seamlessly restore execution of the cur-
rent program without disturbing the current functioning
of the program. Because the 3x64 uses a time-pushed
pipeline, an interrupt will cause the pipeline to drain,
rendering certain code sequences uninterruptible.

Certain code sequences written for the 3x64 may pro-
duce wrong results and are therefore disallowed.
Other code sequences are legitimate but may be unin-
terruptible in the general sense. Still other code se-
quences may be interruptible but not necessarily IEEE-
interruptible. This section deals with all three cases
(sections 16.2-16.4). In the examples, it is assumed
that bypassing is enabled; OP denotes any two-cycle-la-
tency instruction. All the instructions are numbered,
and it is assumed that instruction N + 1 follows instruc-
tion N on the next cycle.

16.1. Definitions of Interruptibility

If there are two instructions, with perhaps other instruc-
tions between them, and the same result is obtained
whether or not there was one or more arbitrary-length
interrupts between them, then the code between the two
instructions (inclusive of these instructions) is interrupt-
ible. If the result depends on whether there was an inter-
rupt, the code is uninterruptible.

For IEEE interruptibility, there is a further requirement
of being able to “fix up” exceptions, which means that
for source exceptions it is necessary to have all the oper-
ands, and for result exceptions it is necessary to have the
result that produced the exception and its status. In the
3x64, it is possible to have up to five result exceptions.
All five result destinations and the associated status are
saved in the status register. See section 12 for details.

16.2. Disallowed Code Sequences

16.2.1. CONFLICTING USE OF THE SAME
HARDWARE

When two successive instructions require the use of the
same hardware, both instructions produce unpredict-
able results.

Example 1
1 R1 X R2 — R3
2 R4 x R6 — R7

If the first multiply is an integer or a double-precision
floating-point multiply in three-cycle latency mode, it re-
quires two passes through the second stage each of
which takes a cycle. Since the second multiply will at-
tempt to use the second stage of the multiplier while it is
being used by the previous multiply, the second instruc-
tion will be ignored, producing unpredictable results.
See section 7.3 and figure 49.

Example 2
1 Divide or SQRT — R1
2 Divide or SQRT — R2

When the DSR unit is occupied with an instruction, an-
other instruction may not be initiated until the prior one
has completed. If this condition is violated, the second
instruction will be ignored, producing unpredictable re-
sults. See section 9.1 and figure 50 for more details.

Both the code register and the status register use the
same 8-bit internal bus for loads and store. (This bus is
identified in figure 83 as status/code bus.) Any code
which results in an attempt to use this bus simultaneously
for loads and stores is illegal, as in the following exam-
ples:

Example 3

1 Load SR1 Delayed load

2 Store SR4 Any store mode
Example 4

1 Load CR2 Delayed load

2 Store CR4 Any store mode
Example 5

1 Load SRt Delayed load

2 Store CR2 Any store mode

On all stores, the status/code bus is used on the cycle
which clocks in the store instruction. This is true even in
the case of delayed stores or delayed-data stores: the
bus is used during the same cycle and the actual delay is
done at the output pins. Thus in these examples the load
and the following store instructions will attempt to use
the status/code bus at the same time, which is illegal.
Since loads override stores, in this case a store will pro-
duce wrong data.

100

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

16.2. Disallowed Code Sequences, continued

16.2.2. BYPASSING ACROSS DIFFERENT DATA
TYPES

Bypassing across different data types can occur in regis-
ter-to-register operations. For example, if instruction N
is a double-precision floating-point multiply, and an at-
tempt is made to use the result of this instruction as a
single-precision floating-point operand in instruction
N + 2 (N + 3 in three-cycle latency mode), bypassing
across data types (in this case, double- to single-) has
occurred. The results produced in such a situation are,
in general, unpredictable.

Since there are four different data types supported in
the 3x64, there are 16 possible bypass combinations.
The following table lists them and specifies whether or
not they are legal. Illegal combinations produce unpre-
dictable results.

Example 1

1 R1 OP R2 —+ R3 Single-precision
floating-point

2 NOP

3 R3 + R4 — R5 Integer

In this example, an attempt is made to use a single-preci-
sion floating-point result of instruction 1 as an integer
operand of instruction 3, which is illegal.

101

Abbreviation Data Type
L 64-bit logical
S Single-precision floating-point
D Double-precision fioating-point
| 32-bit integer

Data Type Crossing Legality
LoL OK
L—+D lllegal
L—+S lllegal
L— llegal
D—-D OK
D—-L OK
D—S llegal
D— | llegal
[OK
|l —- L OK
| =D llegat
|- S lNegali
S+ S OK
S—D liegal
S—L llegal
S =l legal

Figure 93.

16.3. Allowed But Uninterruptible Code

16.3.1. USE OF RESERVED OPCODES

The use of reserved opcodes is illegal as they are not
guaranteed to produce predictable results.

This section contains examples to illustrate code, which,
though legal, would be uninterruptible. In the absence
of an interrupt, old values of registers are used. If an
interrupt occurs, new values would be used, giving a dif-
ferent answer. Therefore, such code is uninterruptible.

16.3.2. DATA NOT READY

Example 1

1
2

R1 OP R2 —+ R3
R3 OP R4 — R5

Instruction 2 specifies R3 which would not be ready until
cycle 3. This code is uninterruptible.

Example 2

1 R3 x R4 —+ R5 Double-precision floating-
point or integer multiply
(three-cycle latency mode)

2 R5 OP R6 — R7

The result of the multiply will not be ready until cycle 4,
yet an attempt is made to use it in cycle 2. This code is
uninterruptible.

Example 3

1 R3 X R4 —+ R5 Double-precision
floating-point or integer
multiply (three-cycle
latency mode)

2 R1 OP R2 — R3

3

The result of the multiply will not be ready until cycle 4,
yet an attempt is made to use it in cycle 3. This code is
uninterruptible.

R5 OP R6 — R7

Example 4
1 R1 + R3 —+ R4
N R4 OP R5 — R6

102

If an instruction tries to use R4 before the divide (or
square root) operation has completed writing into R4,
this code would be uninterruptible. See section 9.

Example 5

1
2

R2 OP R4 — R6

Store R6 Any store mode

The result of the operation will not be written into the
register file until the second half of cycle 3. The result of
the operation will not be available for any store instruc-
tion issued on cycle 2. Therefore, this code is uninter-
ruptible.

Example 6

1
2
3

Operation in cycle 1 will write R6 in the second half of
cycle 3. Delayed store in cycle 3 will not bypass, so it will
drive the old value onto the output port. Thus, this code
is uninterruptible.

R2 OP R4 — R6
R1 OP R7 — R8

Store R6 Delayed store

Example 7

Storing the status register before all operations in the
multiplier, DSR unit, or ALU have completed will, in
general, result in uninterruptible code.

Example 8

Load CRO
Load CR1
Load CR2
Load CR3
Load CR4
Load CR5
Re-execute CR

NOOAWN=

Example 9

1
2

Clear FPEX TAKEN
Re-execute CR

When FPEX TAKEN is set, incoming instructions do not
update the code register. Clearing the FPEX TAKEN bit
allows updating of the code register. If an interrupt oc-
curs, the code register will be updated.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
16.3. Allowed But Uninterruptible Code, continued

16.3.3. DESTINATION CONFLICT Example 4

A destination conflict arises whenever a long-latency in-
struction specifies a destination register that is also speci-
fied as a destination of a following shorter-latency in-
struction that would complete before the first
instruction. The code in these examples is uninterrup-
tible because the destination register will contain two dif-

1

R2 OP R3 — R18

Includes integer or
double-precision
floating-point multiply in
three-cycle latency
mode

ferent results depending on whether there was an inter- 2 Load R16 Delayed load

rupt.

Example 1 Example 5

1 R2 OP R3 — R16 Includes integer or 1 R2 OP R3 — R16 Includes mte.g.er or

e double-precision
double-precision floating-point multiply in
floating-point multiply in three-g F():le latenc Ply
three-cycle latency mode Y Y
mode
2 R6 OP R7 — R8

2 Load R16 Undelayed load 3 Load R16 Delayed load

Example 2 Example 6

1 R1 OP R4 — R16 Includes integer or 1 R1 x R3 — R5 Integer or double-
double-precision recision floating-point
floating-point multiply in P ltioly in th ing-p |
three-cycle latency multiply in three-cycle
mode latency mode

2 R6 OP R7 — R8 2 R2 OP R4 — R5

3 Load R16 Undelayed load

Example 7

Example 3 1 R1 = R2 — R3

1 R1 X R4 — R16 Double-precision
floating-point or integer
I':t‘(’a'ggi}’ rgg;ee‘?'cyc'e N R1 OPR6 — R3 If this instruction

5 R6 OP R7 — R8 completes before the

3 R6 OP R7 — R9 divide its result will be

4 Load R16 Undelayed load overwritten by the

103

subsequent divide
result. Likewise for
square root.

16.4. Generally Interruptible but not IEEE-Interruptible Code

Code which is interruptible in the general sense but is
not IEEE-interruptible arises principally on loads and
when chained multiply-add operations are used without
regard to IEEE interruptibility. These cases are illus-
trated in examples below.

Example 1

1 Load R1; R1 OP R2 — R3 Delayed load

If in the operation R1 has a source exception it cannot
be “fixed up” because R1 gets overwritten by the load.

Example 2

1
2
3

R1 OP R2 —+ R5
R3 OP R4 — R5
R6 OP R7 — R8

This is a case of not-very-useful code, and it should be
avoided. It is included here because it may nevertheless
be encountered.

This code is interruptible only if R5 from the first in-
struction is not going to be used on cycle 3, which effec-
tively makes the first instruction a NOP. If the first in-
struction generates a result exception, by the time an
exception handling routine is ready to use the destina-
tion address and associated status, this information will
have been overwritten by the second instruction. To
make this code IEEE-interruptible, either use different
destination addresses or interleave another instruction
between the two shown.

This is the same example that was used to calculate the
sum of four products in section 10. What is different
here is that the same register R30 is used in conjunction
with T-latches. Since the T-latches cannot be read di-
rectly, the results placed in T-latches must be read from
the corresponding register in the register file. Unless
these registers are different, it will not be possible to fix
up a T-latch result exception because it would be over-
written. Thus, to assure IEEE interruptibility, alternate
file registers must be used in conjunction with alternate
T-latches.

Example 3
1 X1 X B1 — R3;
2 X2 X B2 — R4;
3 Xa X Bs — T0O, R30; R29 + TO — R29; R3 has X1 X B
4 Xa X Ba = T1, R30; R29 + T1 — R29; R4 has X2 x B2
5 Xs X Bs — T0O, R30; R3 + TO — R3;
6 Xs X Bs = T1, R30; R4 + T1 — R4;
7 X7 x Bz = T1, R30; R3 + TO — R3; R3 has X1 X B1 + X3 X Ba
8 Xs X Bs —= T1, R30; R4 + T1 — R4; R4 has X2 X B2 + X4 X Ba
9 nop R3 has X1 X B1 + Xa X Ba + Xs X Bs
10 R3 + R4 — R5; R4 has X2 X B2 + X4 X Bs + X6 X Bs
11
12 R5 has 2XiBi, i =1 to 6
Figure 94.

104

17. Instruction Set
17.1. Code Word Format

The 3364 has a 42-bit code word. The 3164 does not
use the two-bit YCNT and ZCNT fields and has a 38-bit
code word. The format is shown in figures 95 and 96.
The 3164 fields are different and are described in Ap-
pendix A.

ZCNT

The ZCNT field controls data transfers through the Z
port. It is available in 3364 only. For more information,
see section 5.5.

YCNT

The YCNT field controls data transfers through the Y
port. It is available in 3364 only. For more information,
see section 5.5.

XCNT

The XCNT field controls data transfers through the X
port. For more information, see section 5.5.

EFADD

The EFADD field is the register file address field shared
by the F write port and the E read port. It selects one of
32 general-purpose registers to be written to via the F
port, or read from via the E port, or both. For more
details, see section 6.3.

DADD

The DADD field selects one of 32 general-purpose regis-
ters to be written to via the D port of the register file. For
more details, see section 6.2 and section 6.5.

CADD

The CADD field selects one of 32 general-purpose regis-
ters to be written to via the C port of the register file. For
more details, see section 6.2 and section 6.5.

BADD

The BADD field selects one of 32 general-purpose regis-
ters to be read from via the B port of the register file. For
some operations, this field is used as part of the opcode,
in conjunction with the FUNC field. For more details,
see section 6.2 and section 6.5.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

AADD

The AADD field selects one of 32 general-purpose regis-
ters to be read from via the A port of the register file. For
more details, see section 6.2 and section 6.5.

MBIN

The MBIN field selects either the Y bus or the B port of
the register file as the multiplier B input. For more de-
tails, see section 7.2. For some operations, this field is
used as part of the opcode, in conjunction with the
FUNC field.

MAIN

The MAIN field selects either the X bus or the A port of
the register file as the multiplier A input. In the case of
chained multiply-add operations, MAIN is used to select
between the X and the Y buses for one of the multiply
operands. For more details, see section 7.2. For some
operations, this field is used as part of the opcode, in
conjunction with the FUNC field.

ABIN

The ABIN field selects either the Y register or the B port
of the register file as the ALU B input. For more details,
see section 8.2. For some operations, this field is used as
part of the opcode, in conjunction with the FUNC field.

AAIN

The AAIN field selects either the X register or the A port
of the register file as the ALU A input. For more details,
see section 8.2. For some operations, this field is used as
part of the opcode, in conjunction with the FUNC field.

FUNC

The FUNC field, sometimes in conjunction with MAIN,
MBIN, AAIN, ABIN, BADD fields, selects the operation to
be executed.

105

17.1. Code Word Format, continued

5 1111 5 5 5 5 5 4 2 2 Field Width
AlA[M|M Y Z
Func |MB[1[B] AaDD BADD CADD DADD EFADD | XeNT | § | § | Field Name
N N[N T T
141 37 36 35 34 33 32 28 27 23 22 18 17 1312 87 43 21 0 Bit#
WTL 3364
Only
Arithmetic/Logical Load/Store
Operations Operations
" 1
Figure 95. Code word format

CODE WORD FIELD WIDTH (BITS) NAME DESCRIPTION
Ci 0 2 ZCNT Z port control
Csy 5 2 YCNT Y port control
C; 4 4 XCNT X port control
Cis.8 5 EFADD E and/or F port register address
Ci7..13 5 DADD D write port register address
Cos 18 5 CADD C write port register address
Cyr. 03 5 BADD B read port register address
Cas o8 5 AADD A read port register address
Cas 1 MBIN Multiplier B input select
Cay 1 MAIN Multiplier A input select
Cag 1 ABIN ALU B input select
Cag 1 AAIN ALU A input select
Cu1. .37 5 FUNC Function code

Figure 96. Code word fields

106

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

17.2. Independence of the I/O and Operation Portions of the Code Word

The XCNT, YCNT, ZCNT and EFADD fields comprise the
I/O portion of the code word; together they span bits
Ci2..0. The remaining fields, in bits Ca1..13, specify the
operation to be performed, operand sources and result
destinations. Note that everything that needs to be
known about a register-to-register operation is specified
in the operation portion of the instruction at the time the
instruction is issued.

It is possible to specify an instruction so that a single
code word specifies all actions related to this one in-
struction: both the load and the operation.

It is also possible that the operation bits C41..13 specify
an operation that is independent from data transfers on
the 1/0 ports, which are controlled by the Ci2..0 portion
of the code word. For example, an operation may use
the register file both as a source of operands and as a
destination for the results, while the X port is independ-
ently used to load the X register with a value that is unre-
lated to the operation.

The 1/0 portion of the code word is independent from
the operation portion with one exception: if the opera-
tion portion specifies load or store of a code or status
register.

17.3. Mnemonics

The mnemonics and notation used in this document are
those used to control the 3164 in the XL programming
environment. They are given here to simplify under-
standing of the programming model and to provide a
syntax in which to present programming examples.

In the following sections, binary numbers are suffixed
with “b”. A range of values is indicated with “-”., Don’t
care fields are indicated with x’s.

Instructions have the form:

fop, op1, op2, ..., opn

where fop is the operation, the mnemonics for which are

defined in the following sections;
opl, op2, ..., opn

are source/destination operands, with the destination on
the right.

The notation for operand sources and result destinations
is:

Symbol Definition
f0-.£31 General purpose registers in the
register file
X, .y Input registers X and Y
10, .t1 Temporary latches
.sr0-.sr11 Status registers
.crO-.crb Code register bytes
Figure 97.

For convenience in code examples, operands are com-
bined into several overlapping groups:

107

Symbol Registers
rreg .fO-.£31
xreg f0-.131, .x
yreg f0-.£31, .y
xyreg X, Y
tlat .10, .t1
sreg .sr0-.sr11
creg .crO0-.crd
Figure 98.

The symbol for each group below indicates the choice of
one of the available registers. Chained multiply-add in-
structions allow the output of the multiplier or ALU to
be simultaneously written to the register file and a tem-
porary latch. A syntax for these operations is defined in
section 17.9. Load/store instructions allow simultaneous
loading of data into both the register file and the X or Y
register. A syntax for this operation is defined in sec-
tion 17.16.

Note that since load/store and operation portions of the
code word are independent, they are described sepa-
rately.

The following sections explain each instruction in detail;
figures 183 and 184 provide an instruction set summary.

b
17.4. Instruction Interaction with the Status Register

If an instruction affects, or its result is affected by cer-
tain bits of the Status Register, then these bits are identi-
fied on a map of the Status Register.

Bits which affect the result of an instruction are shaded
in the map as shown:

Bits which are affected by an instruction are shaded in
the map as shown:

In some cases, a bit may both affect the result of the
instruction, and it may be affected by the instruction.
The shading used to identify these bits is:

108

17.5. Multiply and Divide Instructions

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

INSTRUCTIONS EXAMPLES
Instruction Comment ful ., .y, .fO
fmul xreg, yreg, rreg r=x Xy fdiv x, f1, .f2
fdiv xreg, yreg, rreg r=x-—4—vy dfrr_\ul 10, .y, .f4
dfmul xreg, yreg, rreg r=x Xy dfdiv .f0, .f3, .f31
dfdiv xreg, yreg, rreg r=x =y

Figure 99. Figure 100.

ENCODING
Field Value Operation Comment
FUNC 00011b fmul 32-bit multiply

00111b fdiv 32-bit divide
01011b dfmul 64-bit multiply
01111b dfdiv 64-bit divide
AAIN O AAIN = ABIN = 0
ABIN AAIN = ABIN = 0
MAIN O MUL A input = .x
1 MUL A input = AADD
MBIN O MUL B input = .y
1 MUL B input = BADD
AADD 0-31 rreg = .f0-.f31
BADD 0-31 rreg = .f0-.f31
CADD xxxxxb No ALU output
DADD 0-31 rreg = .f0-.f31
Figure 101.

In these instructions, if DNRM CONTROL bit SR24=0, sion instructions (fmul, fdiv) clear bits 31-0 in the desti-
denormalized inputs are treated as zero. Single-preci- nation register.

109

17.5 Multiply and Divide Instructions, continued

BITH
SR#
7 8 5 4 3 2 1 0
“‘MuhtblveF\ o FPEX Internal "H. st " ‘ ‘
SRO "ot atetio) Sticky_ 0 0 NEUT ON »Modé e
IEEE Software|, ot FPEX
SR1 Underflow | . Mm ! Delay 1/0 Mode
SR2 NaN le DvZ o OMRRA OVF UNF " N IOVF
EN EN EN " CoritrdL " EN Controt EN
SR3
SR4
SR5 0 0 0 ADESTO
SR6 ASTATO MSTATO
SR7 0 0 0 DIVDEST
SR8 o
SR9 0 0 0 ADEST1
SR10 ASTAT1 MSTATT
SR11 I DSR FPCN | Carry DIVSTAT
in progress

Figure 102. Status reglster map; instructions fmul, dfmul (note: SR07 affects only dfmul)

BIT#
SR#

7 6 5 4 3 2 1 0

Multiplier FPEX Internal
SRO Latency Sticky 0 0 NEUT ON
IEEE Software | gy oo ! FPEX

SR1 Underflow [:B"ypaﬁe' ,.-m:}" o Delay 170 Mode
SR2 NaN INV DvVZ ENR OVF UNF NS IOVF

EN Cottr Control ! EN
SR3 IOVF
SR4 0 TDESTO MDESTO
SRS 0 0] 0 ADESTO
SR6 ASTATO MSTATO
SR7 0 0 I 0
SR8 0 TDEST1 MDEST1
SR 0 0 | 0 ADEST1
SR10 ASTAT1 MSTAT1

DSR

SR11 in progress] FPCN I Carry

Figure 103. Status register map; instructions fdiv, dfdiv

110

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
17.6. Add Instructions

INSTRUCTIONS EXAMPLES
Instruction Comment
fadd xreg, yreg, rreg r=x+y fadd .x, .y, .f0
fsub xreg, yreg, rreg r=x-y fsub .x, .f1, .f2
fsubr xreg, yreg, rreg r=-x+y dfsubr .f0, .y, .f4
dfadd xreg, yreg, rreg r=x+y dfadd .f0, .f3, .f31
dfsub xreg, yreg, rreg r=x-y
dfsubr xreg, yreg, rreg r=-x+y
Figure 104. Figure 105.
ENCODING
Field Value MAIN,MBIN Operation Comment
FUNC 00100b 0,0 fadd 32-bit add
0,1 fsubr 32-bit reverse subtract
1,0 fsub 32-bit subtract
01100b 0,0 dfadd 64-bit add
0,1 dfsubr 64-bit reverse subtract
1,0 dfsub 64-bit subtract
AAIN 0 ALU A input = .x
1 ALU A input = AADD
ABIN O ALU B input = .y
1 ALU B input = BADD
AADD 0-3t rreg = .f0-.f31
BADD 0-31 rreg = .f0-.f31
CADD 0-31 rreg = .f0-.f31
DADD xxxxxb No MUL output
Figure 106.
In these instructions, if DNRM CONTROL bit SR24=0, Single-precision instructions (fadd, fsub, fsubr) clear
denormalized inputs are treated as zero. bits 31-0 in the destination register.

111

17.6. Add Instructions, continued

BIT#
SR#

7 6 5 4 3 2 1 0

Multiplier FPEX Internal | g g
SRO Latency Sticky 0 0 NEUT ON o Potnd]
IEEE Software " gy FPEX

SR1 Underflow o %y!‘%’%’ ‘.9"?.-" " Delay 110 Mode
SR2 NaN INV ovz [..Opaka] OvF UNF

EN EN EN ') Control
SR3 DVZ :
SR4 0 @ TDESTO MDESTO
SRS
SR6 MSTATO
SR7 0 0 0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9
SR10 MSTAT1
SR11 ~ DsR FPCN Carry DIVSTAT

in progress

Figure 107. Status register map; instructions fadd, fsub, fsubr, dfadd, dfsub, dfsubr

112

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

17.7. Compare Instructions

INSTRUCTIONS
The timing of the FPCN output and status register SR11g
Instruction Comment bit update is shown in figure 79.
fcmp xreg, yreg, cond update FPCN EXAMPLES
output and
status register
bit SR11 fcmp .x, .y, .eq
fcmp .x, .f1, .uord
dfcmp xreg, yreg, cond update FPCN dfcmp .f0, .y, .gt
output and dfcmp .f0, .f3, .It
status register
bit SR11g Figure 110.
Figure 108.

In figure 108 “cond” stands for “condition code” and is
interpreted as follows:

Cond Result of (x-y) Symbol
.eq equal to zero (x=1y)
.gt greater than zero x>y
t less than zero (x<vy)
.uord unordered (x?y)

Figure 109.

113

17.7. Compare Instructions, continued

ENCODING

Field Value AAIN,ABIN Operation

Comment

FUNC 00101b 0,0 if x =y, FPFCN « 1, else FPCN « 0
1 if x>y, FPCN « 1, else FFRCN « 0
0 If x <y, FPCN « 1, eise FPCN «— O
1 If x ?y, FPFCN « 1, else FPCN « O

01101b if x =y, FPCN + 1, else FPCN + 0

0.0

0,1 If x>y, FPCN « 1, else FPCN «~ O
1,0 If x <y, FPCN « 1, else FPCN « O
1,1 fx?y, FPCN « 1, else FPCN « 0

MUL A input = .y
MUL A input = AADD

MBIN 0 MUL B input = .x
1 MUL B input = BADD

AADD 0-31 rreg = .fO-.f31
BADD 0-31 rreg = .f0-.f31
CADD xxxxxb
DADD xxxxxb

MAIN

- O

fcmp, no write
fcmp, no write
fcmp, no write
fcmp, no write

dfcmp, no write
dfcmp, no write
dfcmp, no write
dfcmp, no write

No ALU output
No MUL output

32-bit
32-bit
32-bit
32-bit

64-bit
64-bit
64-bit
64-bit

compare
compare
compare
compare

compare
compare
compare
compare

Figure 111.

In these instructions, if DNRM CONTROL bit SR24 = 0, comparison of zero with any denormalized number will

denormalized inputs are treated as zero. Therefore a yield equality.

114

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

17.7. Compare Instructions, continued

BIT#
SR#
7 6 5 4 3 2 1 0

Multiplier FPEX Internal : Fast

SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
[EEE Software] " g " d" " FPEX
SR1 Underflow J-ﬁyﬂaf.s ,.9"?..-"1‘ Delay /0 Mode
SR2 NaN INV DVZ ORI OVF UNF INX IOVE
EN EN EN Caontpdl " EN Control EN EN
SR3 INV Dvz DNRM OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SR5 0 0 l o] ADESTO
SRé ASTATO l MSTATO
SR7 0 0 I 0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9 0 0 I 0 ADEST1
SK10 ASTAT1 MSTAT1
i DSR

SR11 ko I in progress Carry DIVSTAT

Figure 112. Status register map; instructions fcmp, dfcmp
Note: instructions
fcmp .f0, .f1, .uord
or
dfcmp .f0, .f1, .uord
i.e., comparisons that specify the unordered

condition, will never set SR37 (NaN sticky
flag).

115

17.8. Concurrent Multiply-Add Instructions

Concurrent multiply-add instructions allow the program-
mer to obtain maximum throughput from the 3x64 by
simultaneously operating both the multiplier and the
ALU. In order to supply both the multiplier and ALU
with operands, four input values are required. The on-
chip register file can provide two of these inputs, se-
lected by the AADD and BADD fields. The X and Y regis-
ters are used to provide the other two input operands.
They can be used to provide both input operands to
either of the arithmetic units, or the X register can be
used as an input to one arithmetic unit, and the Y regis-
ter as an input to the other.

These instructions are especially useful in Configuration
A. They can be used in Configurations B or C, but some
problems that could make best use of these instructions
will be I/O-bound on these architectures.

If xreg selects a file register on both sides of an instruc-
tion (as opposed to a file register on one side and the X
register on the other), then it must be the same register.
The reason for this is that only the AADD field is avail-
able to select the file register for the xreg operand. The
same applies to the yreg, except the BADD field selects
the yreg operand from the register file. See examples.

INSTRUCTIONS

Instruction Comment

fmul xreg, yreg, rreg ; fadd xreg, yreg, rreg M=x Xy r2=x+y

fmul xreg, yreg, rreg ; fsubr xreg, yreg, rreg M=xXy r2=-x+y
fmul xreg, yreg, rreg ; fsub xreg, yreg, rreg rMm=xxy r=x-y

dfmul xreg, yreg, rreg ; dfadd xreg, yreg, rreg M=xXy r2=x+y

dfmul xreg, yreg, rreg ; dfsubr xreg, yreg, rreg M=xXy r2=-x+y
dfmul xreg, yreg, rreg ; dfsub xreg, yreg, rreg Mm=xXy,r2=x-y

Figure 113.

EXAMPLES
fmul %, .y, .fO ; fadd .f1, .f2, .f3
fmul .f4, .f5, .f0 ; fadd .x, .y, .f3
fmul x, .f5, .f20 ; fadd .f31, .y, .f30
fmul .f13, .y, .f31 ; fadd .x, .f2, .f30
Figure 114.

It is possible to use the same register as an input to both
the multiplier and the ALU, as in the following exam-
ples:

fmul .x, .f2, .f0 ; fadd .f1, .f2, .f3
fmul .f1, .f2, .fO ; fadd .f1, .y, .f3
Figure 115.

116

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

17.8. Concurrent Multiply-Add Instructions, continued

ENCODING

Field Value Operation Comment

FUNC 00000b fmul...; fadd... 32-bit multiply; 32-bit add
00001b fmul...; fsubr... 32-bit multiply; 32-bit reverse subtract
00010b fmul...; fsub... 32-bit multiply; 32-bit subtract
01000b dfmul...; dfadd... 64-bit multiply; 64-bit add
01001b dfmul...; dfsubr... 64-bit multiply; 64-bit reverse subtract
01010b dfmul...; dfsub... 64-bit multiply; 64-bit subtract

AAIN O ALU A input = .x
1 ALU A input = AADD

ABIN O ALU B input = .y
1 ALU B input = BADD

MAIN O MUL A input = .x
1 MUL A input = AADD

MBIN O MUL B input = .y
1 MUL B input = BADD

AADD 0-31 rreg = .f0-.f31

BADD 0-31 rreg = .f0-.f31

CADD 0-31 rreg = .f0-.f31

DADD 0-31 rreg = .f0-.f31

Figure 116.

In these instructions, if DNRM CONTROL bit SR24=0, Single-precision instructions clear bits 31-0 in the desti-
denormalized inputs are treated as zero.

nation register.

117

17.8. Concurrent Multiply-Add Instructions, continued

BIT#
SR#
7 6 5 4 3 2 1 0
‘m”";‘l\'ﬁﬂﬁiﬁliém"“?,u FPEX internal w““r e
SRO T S L Sticky 0 0 NEUT ON g Aeqe
IEEE Softwarel " g bt >“‘:w EPEX
SR1 Underflow ‘Jﬂ"‘%y?’%’l?ﬂu" | Delay /O Mode
SR2 NaN INV DvZ o OB oOvE UNE T ovr
EN EN o SN i |
SR3
SR4
SR5
SRé
8R7
SR8
SRg
SR10
DSR
SR akan in progress FPCN Carry DIVSTAT

Figure 117. Status register map; concurrent multiply-add instructions

118

17.9. Chained Multiply-Add Instructions

The chained multiply-add instructions are the other set
of instructions which result in the maximum throughput
available from the 3x64. They can be used in pipelined
polynomial algorithms, matrix transforms, and other ap-
plications where there is a need to calculate sum-of-
products.

In order to feed the multiplier and the ALU simultane-
ously, four input operands are required. The on-chip
register file provides two of the four inputs, selected by
the AADD and BADD fields. The chained multiply-add
instructions use one of the X or Y registers and one of
the T-latches to provide the other two. The multiplier
uses either the X or the Y register as one of its inputs; the
ALU uses one of the T-latches as one of its inputs. The
other inputs to the multiplier and ALU are supplied by
the register file. See section 10 also.

In chained multiply-add instructions, it is possible to
specify a floating-point pass operation instead of a
multiply.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

Chained multiply-add instructions must be used in a very
specific way, as described below.

The multiplier must write its output to two destinations:
a file register and a T-latch. The ALU must use the same
T-latch as its input. The value presented to the ALU in
the T-latch is the result of the most recently completed
multiply which has this T-latch as one of its destinations;
depending on the multiplier latency mode, this multiply
began two, three, or more cycles earlier.

The chained multiply-add instructions are the only ones
that use the T-latches. There are no instructions which
directly read or write the T-latches. There are no in-
structions which allow the multiplier to write into a T-
latch without having to perform an ALU operation.
There are no instructions that allow one to perform an
ALU instruction using a T-latch as an input without
starting a multiply on the same cycle that will overwrite
the same T-latch two or three cycles later, depending on
the latency mode.

119

17.9. Chained Multiply-Add Instructions, continued

INSTRUCTIONS

In the following, TLAT stands for (rreg and .t0) or (rreg
and .t1). Both TLAT and tlat must select the same latch.

Instruction Comment
Single-precision multiply, single-precision add, single-precision result:

fmul xyreg, rreg, TLAT ; fadd rreg, tlat, rreg rrt=xX b, r=a+t
fmul xyreg, rreg, TLAT ; fsub rreg, tlat, rreg rnt=xxXxb, r=a-t
fmul xyreg, rreg, TLAT ; fsubr rreg, tlat, rreg rrt=x X b, r=—a+t
Double-precision multiply, double-precision add, double-precision result:

dfmul xyreg, rreg, TLAT ; dfadd rreg, tlat, rreg rrt=xX b, r=a+t
dfmul xyreg, rreg, TLAT ; dfsub rreg, tlat, rreg rt=xXb, r=a-t
dfmul xyreg, rreg, TLAT ; dfsubr rreg, tlat, rreg rrt=x X b, r=—a+t
F32 x F64 — F64, double-precision add, double-precision result:

fddmul xyreg, rreg, TLAT ; dfadd reg, tlat, rreg rrt=xXb, r=a+t
F32 x F32 — F64, double-precision add, double-precision result:

ffdmul xyreg, rreg, TLAT ; dfadd rreg, tlat, rreg rrt=x X b, r=a+t
fpass xyreg, TLAT ; fadd rreg, tlat, rreg rrt=x;r=a+t
fpass xyreg, TLAT ; fsub rreg, tlat, rreg rrt=x;r=a-t
fpass xyreg, TLAT ; fsubr rreg, tlat, rreg r,t=x;r=—a+t
dfpass xyreg, TLAT ; dfadd rreg, tlat, rreg rrt=x;r=a+t
dfpass xyreg, TLAT ; dfsub rreg, tiat, rreg rrt=x;r=a-1t
dfpass xyreg, TLAT ; dfsubr rreg, tlat, rreg rrt=x;r=-a+t

Figure 118.

120

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
17.9. Chained Multiply-Add Instructions, continued

ENCODING
Field Value . Operation Comment
FUNC 10000b fmul...; fadd... 32-bit mul, add
10001b frul...; fsubr... 32-bit mul, subr
10010b fmul...; fsub... 32-bit mul, sub
10011b ffdmul...; dfadd... Faz X F32 — Fe4, Fes + Fea — Fea
10100b dfmul...; dfadd... 64-bit mul, add
10101b dfmuil...; dfsubr... 64-bit mul, subr
10110b dfmul...; dfsub... 64-bit mul, sub
10111b fddmul...; dfadd... Faz X Fe4 — Fs4, Fea + Fea — Foa
AAIN, ABIN 0,0 Select .t0 for MUL output ALU A input always uses AADD
and ALU input
1,0 Select .t1 for MUL output
and ALU input
0,1 Do not load sither T-latch
from multiplier output;
select BADD for ALU input.
MAIN 0 MUL A input = .x
1 MUL A input = .y
MBIN 0 Pass A
1 MUL B input = BADD
AADD 0-31 .fO-.f31
BADD 0-31 .fO-.f31
CADD 0-31 .fO-.£31
DADD 0-31 f0-.£31
Figure 119.

In these instructions, if DNRM CONTROL bit SR24=0, sion instructions clear bits 31-0 in the destination
denormalized inputs are treated as zero. Single-preci- register.

EXAMPLES

fmul .x, .f1, .f2, .t0
fmul .y, .f1, .f31, .t1
dfmul .y, .f1, .f11, .t1
fddmul .x, .f5, .f6, .t0

fadd .f3, .t0, .f4
fadd .f30, .t1, .f6
dfsub .f3, .t1, .f6
dfadd .f4, .t0, .f7

Figure 120.

121

17.9. Chained Multiply-Add Instructions, continued

BIT#
SR#
7 6 5 4 3 2 1 0
o Kt ibpeR FPEX internal | gt g L g
SRO e Sticky 0 0 NEUT ON [Fetpding fede - Agede i
IEEE Software " g g " FPEX
SR1 Undertiow '*..v"'%y'?aﬁ’,wu"j. Delay 1/0 Mode
SR2 NaN INV DVZ OVF UNF o IOVF
EN EN EN EN Contro! O EN EN
SR3
SR4
SR5
SR6
SR7
SR8
SR9
SR10
SR11 ~ DSR I EPCN Carry DIVSTAT
in progress

Figure 121.

Status register map; chained multiply-add instructions

122

17.10. Integer Instructions

17.10.1. INTEGER ADD AND SUBTRACT
INSTRUCTIONS

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

EXAMPLES

Instruction Comment

faddi .x, .y, .f0

faddi xreg, yreg, rreg r=x+y fsubir .x, .f1, .f2
fsubir xreg, yreg, rreg r=-x+y faddic .f0, .y, .f4
faddic xreg, yreg, rreg r=x+y+ carry fsubirc .f0, .f3, .f31
fsubirc xreg, yreg, rreg r=-x+y-1+ carry
Figure 122. Figure 123.
ENCODING
Field Value Operation Comment
FUNC 11000b faddi 32-bit integer add
faddic 32-bit integer add with carry
fsubir 32-bit integer subr
fsubirc 32-bit integer subr with borrow
AAIN O no carry (borrow)
1 use carry (borrow)
ABIN O operation is addition
1 operation is reverse subtraction
MAIN O MUL A input = .x
1 MUL A input = AADD
MBIN O MUL B input = .y
1 MUL B input = BADD
AADD 0-3t .fO-.£31
BADD 0-31 .fO-.£31
CADD xxxxxb No ALU output
DADD 0-31 f0-.£31
Figure 124.

123

y .
17.10. Integer Instructions, continued

BIT#
SR#
7 6 5 4 3 2 1 0
Multiptier FPEX internal . Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
[EEE Software [g e "l FPEX
SR1 Underflow | Eveats’erd Delay /0 Mode
sR2 NaN INV DVZ DNRM OVF UNF INX IOVF
EN EN EN Control EN Control EN
SR3 NaN INV DvZ DNRM OVF UNF INX
SR4 0 TDESTO MDESTO
SR5 0 0 I 0 ADESTO
SR6 ASTATO MSTATO
SR7 0 0 [0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9 0 0 0 ADEST1
SR10 ASTAT1 MSTATH1
DSR
SR11 B in progress FPCN : » DIVSTAT
Figure 125. Status register map; instructions fmulil, fmulim, faddi, fsubir
BIT#
SR#
7 6 5 4 3 2 1 0
Multiplier FPEX Internat ; Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software f syl " FPEX
SR1 Underflow ‘,n"‘FJP%F‘NHD‘Y}‘JN Delay 170 Mode
SR2 NaN INV DVZ DNRM OVF UNF INX IOVF
EN EN EN Control EN Control EN
SR3 NaN INV DvzZ DNRM OVF UNF INX
SR4 0 TDESTO MDESTO
SR5 0 0 | 0 ADESTO
SR6 ASTATO MSTATO
SR7 0 0 I 0 DIVDEST
SR8 0 TDEST? MDEST1
SR9 0 0 I 0 ADEST1
SR10 ASTAT1 MSTAT1
DSR
SR11 in progress I FPCN [Catry DIVSTAT

Figure 126. Status register map; instructions faddic, fsubirc

124

17.10. Integer Instructions, continued

17.10.2. INTEGER MULTIPLY

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

INSTRUCTIONS EXAMPLES
Instruction Comment fmulil x, .y, .fO
) fmulim .x, .f1, .f2
fmulil xreg, yreg, rreg r=(x X ys fmulil .f0, .y, .f4
fmulim xreg, yreg, rreg r=(x X y)ms fmulim .f0, .£3, .f31
Figure 127. Figure 128.
ENCODING
Field Value Operation Comment
FUNC 11010b fmulil 32-bit integer multiply, return LS
11011b frmulim 32-bit integer multiply, return MS
AAIN O AAIN = ABIN = 0
ABIN AAIN = ABIN = 0
MAIN O MUL A input = .x
1 MUL A input = AADD
MBIN O MUL B input = .y
1 MUL B input = BADD
AADD 0-31 .fO-.£31
BADD 0-31 .fO-.£31
CADD xxxxxb No ALU output
DADD 0-31 .fO-.£31
Figure 129.

All integer instructions clear bits 63-53 and 20-0 in the

destination register.

125

17.11. 64-bit Logical Operations

INSTRUCTIONS EXAMPLES
Instruction Comment and X, .y, .f0
and xreg, yreg, rreg r=xANDy or x, 1, .2
or xreg, yreg, rreg r=xORYy xor A0, .y, .14
xor xreg, yreg, rreg r=xXORy mov .y, .f31
mov* yreg, rreg r=x
Figure 131.
* “mov .x, .f0” and “mov .f0, .f31" are monadic
logical multiplier instructions. See section 17.13.
Figure 130.
ENCODING
Field Value Operation Comment
FUNC 11001b 64-bit logical operation
AAIN, ABIN 0,0 fop = and
0,1 fop = or
1,0 fop = xor
1.1 mov Logical pass: mov .y, .fn
MAIN 0 MUL A input = .x
1 MUL A input = AADD
MBIN 0 MUL B input = .y
1 MUL B input = BADD
AADD 0-31 rreg = .f0-.f31
BADD 0-31 rreg = .f0-.f31
CADD XXXXXb No ALU output
DADD 0-31 rreg = .fO-.f31
Figure 132.

Note that results of logical operations may not be by-
passed to floating-point operations.

126

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
17.11. 64-bit Logical Operations, continued

BIT#

SR#

7 6 5 4 3 2 1 0

Multiplier FPEX internal f Fast
SRo Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software ,.:'"': - '.,.v"l,..r',..:"ﬂ FPEX

SR1 Underflow { .« A,.uyf.’na%’ﬂﬂ.-" | Delay 1/0 Mode
SR2 NaN INV DvZ DNRM OVF UNF INX IOVF

EN EN EN Control EN Control EN EN
SR3 NaN INV DvZ DNRM OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SR5 0 0 0 ADESTO
SRé ASTATO MSTATO
SR7 0 0 l 0 DIVDEST
SR8 0 TODEST1 MDEST1
SR9 0 0 o] ADEST1
SR10 ASTAT1 MSTAT1

FPEX DSR

SR11 Taken | in progress I FPCN I Carry DIVSTAT

Figure 133. Status register map; instructions and, or, xor, mov

127

17.12. Min and Max Instructions

Min and max are defined for single- and double-preci-
sion floating-point operands. They are also defined for
integer operands if these integers are unsigned. (Every-
where else on the chip, integers are treated as two's
complement signed). Both operands must be of the
same data type. These instructions are logical and do
not signal exceptions; therefore NaN handling will not be
correct. They cannot be used in programs which must
meet the IEEE Standard for Binary Floating-Point

EXAMPLES

min X, .y, .f0
max x, Jf1, f2
min f0, .y, .f4
max 10, .13, .f31

Arithmetic. Figure 135.
INSTRUCTIONS
Instruction Comment
max xreg, yreg, rreg r = max(x,y)
min xreg, yreg, rreg r = min{x,y)
Figure 134.
ENCODING
Field Value Operation Comment
FUNC 11101b min/max
AAIN, ABIN 0,0 min
0,1 max
MAIN 0 MUL A input = .x
1 MUL A input = AADD
MBIN 0 MUL B input = .y
1 MUL B input = BADD
AADD 0-31 rreg = .fO-.f31
BADD 0-31 rreg = .f0-.f31
CADD XXXxxb No ALU output
DADD 0-31 rreg = .f0-.f31
Figure 136.

These instructions never treat denormalized numbers as
zero, even if DNRM CONTROL bit SR24=0.

128

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
17.12. Min and Max Instructions, continued

BIT#

SR#

7 6 5 4 3 2 1 (4]

Multiplier FPEX Interna! : Fast
SRo Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software [« e g ¢ s o FPEX

SR1 Underfiow © |/+Bvbats’or,] FEEX 1/0 Mode
SR2 NaN INV DvZ DNRM OVF UNF INX IOVF

EN EN EN Control EN Control EN EN
SR3 NaN INV Dvz DNRM OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SRS 0 0 ' Q ADESTO
SR6 ASTATO MSTATO
SR7 0 4] 0 DIVDEST
SR8) TDESTH1 MDEST1
SR9 o 0 0 ADEST1
SR10 ASTAT1 MSTAT1

FPEX DSR

SR11 Taken I in progress I FPCN l Carry DIVSTAT

Figure 137. Status register map; instructions min, max

129

17.13. Monadic ALU Instructions

INSTRUCTIONS
Instruction Function Comment
fixr xreg, rreg rn=round (Faz) convert single float to integer and round
fix xreg, rreg n= trunc (Fs2) convert single float to integer and truncate (round to zero)
dfixr xreg, rreg n = round (Fes) convert double float to integer and round
dfix xreg, rreg n = trunc(Fe4) convert double float to integer and truncate (round to zero)
float* xreg, rreg ra2 = float (la2) convert integer to single float and truncate (round to zero)
dfloat xreg, rreg re4 = float (la2) convert integer to double float
dfcnvt xreg, rreg ra2 = round (Fea) convert double float to single float and round
fdcnvt xreg, rreg res = Fa2 convert single float to double float
sii** xreg, rreg r=x<<1 shift, logical, left (64-bit data), 1 bit, 0 — Isb
scl** xreg, rreg r = msb(x) +(x <<1) shift, circular, left (64-bit data), 1 bit
slr** xreg, rreg r=x>1 shift, logical, right (64-bit data), 1 bit, 0 — msb
sar** xreg, rreg r= (x> 1) and shift, arithmetic, right (64-bit data), 1 bit
sign(r) = sign(x)
dfdw xreg, rreg Feao — Feaw
dfude xreg, rreg Fesu — FsaD (exact)
dfudi xreg, rreg Fesau — FeaD (inexact)
fdw xreg, rreg Fa2p — Feaw
fude xreg, rreg Fazu — Fa2p (exact)
fudi xreg, rreg Fsau — Fasz2p (inexact)

*

Not IEEE: for IEEE float operations, use dfloat followed by dfcnvt.
** These are logical instructions; bypassing their results to floating-point operations is illegal.

Figure 138.
EXAMPLES

fixr .x, .fO
dfloat .x, .f1

dfdw .f0, .f3

dfcnvt .f0, .f

4

Figure 139.

130

17.13. Monadic ALU Instructions, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

ENCODING
Field Value ABIN,MBIN Operation Comment
FUNC 11111b Monadic operation
AAIN O ALU A input =
1 ALU A input =
MAIN O
AADD 0-31 rreg = .f0-.f31
BADD 01000b dfixr Fe4 — la2 (round)
dfix Fes — laz (truncate)
fixr Fa2 — 32 (round)
fix Faz — a2 (truncate)
01001b dfloat 32 — Fe4
float ls2 — Faz (truncate)
01010b dfcnvt Fes — Faz
fdenvt Faz — Fe4
01100b slt 64-bit data logical left shift 1, 0 — Isb
scl 64-bit data circular left shift 1
sir 64-bit data logical right shift 1, 0 — msb
sar 64-bit data arithmetic right shift 1
01110b dfude Fesu — Feap (exact)
dfudi Feau — Fe4p (inexact)
fude Fs2u — Fazp (exact)
fudi Faau — Fazp (inexact)
01111b dfdw Feap — Feaw
fdw Fazp — Faaw
CADD 0 -31 rreg = .f0-.f31

DADD xxxxxb

No MUL output

Figure 140.

If DNRM CONTROL bit SR24 = 0, instructions dfcnvt,

fdenvt, and fix treat denormalized inputs as zero.

17.13. Monadic ALU Instructions, continued

BIT#
SR#
7 6 5 4 3 2 1 0
Multiplier FPEX Internal oo g g Fast
SRO Latency Sticky 0 0 NEUT ON [" Pounding fcge Mode
IEEE Software FPEX
SR1 Underflow Bypass on Delay 170 Mode
SR2 NaN INV DVZ " OMRRA OVF UNF INX 1OVF
EN EN EN e EN Control
SR3 INV DVZ ¥ OVF UNF
SR4 0 TDESTO MDESTO
SR5 0 0 l 0 ADESTO
SR6 ASTATO MSTATO
SR7 0 0 l 0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9 0 0 I 0 ADEST1
SR10 ASTAT1 MSTAT1
DSR
SR11 In orogress | FPCN Carry DIVSTAT
Figure 141. Status register map; instructions fixr, dfixr
BIT#
SR#
7 6 5 4 3 2 1 0
Muttiplier FPEX Internal ; Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software FPEX
SR1 Underflow Bypass on Delay 1/0 Mode
SR2 NaN INV ovz i AR OVF UNF INX IOVF
EN EN EN Cohtrai EN Control
SR3 Na NV DVZ OVF UNF
SR4 0 TDESTO MDESTO
SRS 0 0] 0 ADESTO
SR6 ASTATO MSTATO
SR7 0 0 I 0 DIVDEST
SR8 o TDEST1 MDEST1
SR9 o 0 I 0 ADEST1
SR10 ASTATH MSTAT1
DSR
SR11 i orearess I FPCN I Carry DIVSTAT

Figure 142. Status register map; instructions fix, dfix

132

17.13. Monadic ALU Instructions, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

BIT#
SR#
7 6 5 4 3 2 1 0
Multiplier FPEX Internal ; Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software [« gl "l FPEX
SR1 Underflow ‘,.«"'%yéaﬁg“wﬂ'“ . Delay 1/0 Mode
SR2 NaN INV Dvz DNRM OVF UNF INX IOVF
EN EN EN Control EN Control EN EN
SR3 NaN INV DvZ DNRM OVF UNF : IOVF
SR4 0 TDESTO MDESTO
SRS ADESTD
SR6 MSTATO
SR7 0 0 0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9
SR10 MSTAT1
DSR
SR11 : in progress FPCN Carry DIVSTAT
Figure 143. Status register map; instruction float
BIT#
SR#
7 6 5 4 3 2 1 0
Multiplier FPEX Internal ; Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
i W i T
IEEE Software | it vt o’ ' FPEX
SR1 Underflow o V‘P?‘?ﬁ’“ n‘ h Delay 1/0 Mode
SR2 NaN INV Dvz DNRM OVF UNF INX IOVF
EN EN EN Control EN Control EN EN
SR3 NaN INV DVZ DNRM OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SRS
SR6 MSTATO
SR7 0 0 0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9 I
SR10 MSTAT1
FPEX DSR
SR11 T aken in progress I FPCN Carry DIVSTAT

Figure 144. Status register map; instruction dfloat

133

17.13. Monadic ALU Instructions, continued

BIT#
SR#
7 6 5 4 3 2 1 0
Multiplier FPEX Internal B e " Fast
SRO Latency Sticky 0 0 NEUT ON L AGAMOGE, ' 1 Ahende
IEEE Software | &gy FPEX
SR1 Underflow I asson Deiay 1/0 Mode
SR2 NaN INV DvZ NE INX IOVF
EN EN EN eantrel, EN EN
SR3 INV DvVZ \ IOVF
SR4 0 TDESTO MDESTO
SR5
SR6 MSTATO
SR7 0 0 0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9
SR10 MSTAT1
SR11 _ DSR FPCN Carry DIVSTAT
in progress
Figure 145. Status register map; instruction dfcnvt
BIT#
SR#
7 6 5 4 3 2 I 1 0
Multiplier FPEX Internal . Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software byl 4l g FPEX
SR1 Underflow ..4"4?'{9?, S Delay 1/0 Mode
SR2 NaN INV DVZ R OVF UNF INX IOVF
EN EN EN " Catieal” EN Control EN EN
SR3 INV vz OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SRS
SR6 MSTATO
SR7 0 0 0 DIVDEST
SR8 0 TDEST? MDEST1
SR I
SR10 _ MSTAT1
2 DSR
SR11 Tak in progress I FPCN Carry DIVSTAT

Figure 146. Status register map; instruction fdcnvt

134

17.13. Monadic ALU Instructions, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

BIT#

SR#

7 6 5 4 3 2 1 0

Mulitiplier FPEX internal : Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software "¢ " FPEX

SR1 Underflow éyb) Delay 110 Mode
SR2 NaN INV Dvz DNRM OVF UNF INX IOVF

EN EN EN Control EN Control EN EN
SR3 NaN INV bvz DNRM OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SR5
SR6 MSTATO
SR7 0 0 0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9 ADESTI
SR10 MSTATI

FPEX DSR
SR1t1 Taken in progress [FPCN Carry DIVSTAT

Figure 147. Status register map; instructions sll, scl, slr, sar
BIT#

SR#

7 6 5 4 3 2 1 o]

Muttiplier FPEX internal ; Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software w"“: “r““r““m““r““:““ FPEX

SR1 Underflow [« ?%ﬁ?%ﬁ%f’ﬂ‘ ! Delay 1/ Mode
SR2 NaN INV bvz DNRM OVF UNF INX IOVF

EN EN EN Control EN Control EN EN
SR3 NaN INV bvz DNRM OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SR5
SR6 MSTATO
SR7 0 0 o] DIVDEST
SR8 0 TDEST1 MDEST t
SR9 I ADEST 1
SR10 MSTAT1

FPEX DSR
SR11 Taken in progress I FPCN Carry DIVSTAT

Figure 148. Status register map; instructions dfdw, dfude, dfudi, fdw, fude, fudi

135

17.14. Monadic Multiplier Instructions

INSTRUCTIONS EXAMPLES
Instruction Comment fsqrt .x, .10
fsart xreg, rreg r=vx g;sgrt ;‘0 -f:4
dfsqgrt xreg, rre r=.x abs .19, .

a 9 9 mov .f0, .f3
fabs xreg, rreg r=|x|
dfabs xreg, rreg r=|x|
fabsi xreg, rreg ri = Ixl Figure 150.
fnegi xreg, rreg = -x
fnegic xreg, rreg r=-x-1+ carry
faddic* xreg, rreg = X + carry
fpass xreg, rreg r=x
dfpass xreg, rreg r=x
mov xreg, rreg r=x
clr** rreg r=20
neg** xregq, rreg = =X
dneg™* * xreg, rreg = -X
not xreg, rreg r=x

involved.

*This is the same assembler mnemonic as the dyadic
faddic. The assembler selects the appropriate
function code by examining the number of registers

**These instructions are logical; bypassing of their
results to floating-point operations is illegal.

Figure 149.

136

17.14. Monadic Multiplier Instructions, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

ENCODING
Field Value ABIN,MBIN Operation Comment
FUNC 11111b
AAIN 0
MAIN 0 MUL A input = .x
1 MUL A input = AADD
AADD 0-31 rreg = .f0-.f31
BADD 00100b dfsqrt V/Fe4
fsqgrt VFaz2
00101b fabsi A
fnegi Is2 arithmetic negate
faddic ls2 add carry
fnegib la2 arith. negate with borrow
00110b dfpass Fes pass™
dfabs |Fe4|
fpass Fsz2 pass™
fabs |Faz|
00111b clr
neg, dneg
not
mov logical pass
CADD XXXXXD No ALU output
DADD 0-31 rreg = .f0-.f31

*

The Fe4 and F32 pass operations also set the status
code, both on the S3..0 pins and in the status
register. By contrast, the mov operation (logical
pass) does not affect status. Both operations pass
NaNs unchanged.

Figure 151.

If DNRM CONTROL bit SR24 = 0, instructions dfsqrt,
fsart, fabs, dfabs, fpass, dfpass treat denormalized in-
pU[S as zZero.

Integer instructions (fabsi, fnegi, faddic, fnegib) clear

bits 63-53 and 20-0 in the destination register.

137

Single-precision instructions (fpass, fabs, fsqrt) clear
bits 31-0 in the destination register.

17.14. Monadic Multiplier Instructions, continued

BIT#

SR#

7 6 5 4 3 2 1 0

Mutltiplier FPEX Internal
SRO Latency Sticky 0 0 NEUT ON
[EEE Sottware |« gy EPEX

SR1 Undertlow | Bybass o " Delay 1/0 Mode
sR2 NaN INV Dvz OMRI OVF UNF INX 1OVF

EN EN EN Tantps] EN Control EN EN
SR3 ' : UNF :
SR4
SR5 0 0 l 0 ADESTO
SR6
SR7 0
SR8 0
SR9 0 0 0 ADEST1
SR11 _DsR l FPCN Carry DIVSTAT

IN progress
Figure 152. Status register map; instructions fsqrt, dfsqrt
BIT#

SR#

7 6 5 4 3 2 1 0

Multiplier Internal
SRO Latency 0 0 NEUT ON Rounding Mode
IEEE Software | i FPEX

SR1 Underflow - Delay 1/ Mode
R NaN DVZ OVF UNF INX IOVF

EN Control EN EN
SR3
SR4 ESTO
SR5 0 0
SR6 ASTATO
SR7 0 0 0 DIVDEST
SR8 0
SR9 0 0 | 0 ADEST1
SR10 ASTAT1
SR11 _ DsR l FPCN] Carry DIVSTAT

in progress

Figure 153. Status register mapl; instructions fabs, dfabs, fpass, dfpass

138

17.14. Monadic Multiplier Instructions, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

BIT#
SR#
7 6 5 4 3 2 1 0
Multiplier FPEX Internal ! Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software m“”: ot ‘m:”“ FPEX
SR1 Underflov _ | BYBaSs orl Delay 1/0 Mode
SR2 NaN INV DvZ DNRM OVF UNF INX IOVF
EN EN EN Control EN Control EN
SR3 NaN INV DVZ DNRM OVF UNF
SR4 0
SR5 0 0 0 ADESTO
SRé ASTATO
SR7 0 0 0 DIVDEST
SR8 0
SR9 0 0 0 ADEST1
SR10 ASTAT1
DSR
SR11 e | in rogress FPCN Carry DIVSTAT
Figure 154. Status register map; instructions fabsi, fnegi, faddic
BIT#
SR#
7 6 5 4 3 2 1 0
Multiplier FPEX internal ; Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software b sy EPEX
SR1 Underflow B Delay 1/0 Mode
SR2 NaN INV DvVZ DNRM OVF UNF INX IOVF
EN EN EN Control EN Control EN EN
SR3 NaN INV DVZ DNRM OVF UNF INX IOVF
SR4 0
SR5 0 0 0 ADESTO
SR6 ASTATO I STATO
SR7 0 0 0 DIVDEST
SR8 0 I MDESTYL
SR9 0 0 0 ADEST1
SR10 ASTAT1 AT
FPEX DSR
SR11 Taken in progress FPCN Carry DIVSTAT

Figure 155. Status register map; instructions clr, neg, dneg, not, mov

139

P e,

17.15. Miscellaneous Instructions

17.15.1. NOP INSTRUCTION ENCODING
The nop instruction preserves the state of the 3x64.
Note: The nop instruction is not affected by, and has no Field Value
effect upon, the status register.
FUNC 11111b
INSTRUCTION AAN 0
ABIN 1
MAIN 0
Instruction Comment MBIN 0
nop BADD 0
Figure 156. Figure 159.
ENCODING 17.15.3. RESET INSTRUCTION
The RESET instruction sets all status registers to zero.
Field Value
INSTRUCTION
FUNC 11111b
ﬁg‘:m g Instruction Comment
MAIN 0 reset 0—-+SRBRN (N=290, ..., 11)
MBIN 0 -
BADD 0 Flgure 160.
Figure 157. ENCODING
17.15.2. RE-EXECUTE CODE REGISTER Fiel Val
INSTRUCTION ield alue
FUNC 11111b
INSTRUCTION AAIN 0
This instruction is used to execute the instruction stored ABIN 0
in the code register. It re-executes both the arithmetic/ MAIN 0
logical and I/O portions of the instruction. The load/ MBIN 1
store operation can be suppressed by clearing the I/O BADD 0
portion of the code register (i.e. making the load/store
operation a nop). Figure 161.

Instruction Comment
excr Execute the instruction
in the code register
Figure 158.

140

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

17.16. Load and Store Instructions

Since load/store portion of the code word is completely In the following, REG stands for (rreg, xyreg) or (rreg)
independent from the operation portion (except for or (xyreg). Also if “load” is prefixed by “y”, the Y port
load/store code/status registers), the fields that comprise is being used; if “store” is prefixed by “z”, the Z port is

the operation portion are not specified.

being used; otherwise the specified load or store occurs
through the X port.

Instruction Comment
dioad REG Load LS, MS of a double-precision operand*
dload| REG Load LS of a double-precision operand
dloadm REG Load MS of a double-precision operand
fioad REG Load single-precision openand (does not affect bits 31-0)
load REG Load integer (clears bits 63-53 and 20-0)
dstore rreg Store LS, MS of a double-precision operand*
dstorel rreg Store LS of a double-precision word
dstorem rreg Store MS of a double-precision word
fstore rreg Store single-precision operand
store rreg Store integer

Figure 162.

141

17.16. Load and Store Instructions, continued

The following tables summarize the effects of the 1/0
instructions. The columns in the tables have the follow-

ing meanings:

int Marked with an x if the data type of the operation is integer

float Marked with an x if the data type of the operation is floating-point

m Marked with an x if the move is the most-significant 32-bit word

| Marked with an x if the move is the least-significant 32-bit word

X Marked with an x if input to the X register

Y Marked with an x if input to the Y register

EFADD Marked with an x if input to, or output from, the register file

Figure 163.
BIT#
SR#
7 6 5 4 3 2 1 0

e | & | o o | e, v
SR1 IEEE Software| Bypass on Boi O . ,.
SR3 NaN INV DvZ DNRM OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SR5 0 0 0 ADESTO
SR6 ASTATO MSTATO
SR7 0 0 0 DIVDEST
SR8 0 TOEST1 MDEST1
SR9 0 0 | 0 ADEST1
SR10 ASTAT1 MSTATH
SR11 Jaex in ggg,ess I FPCN carry DIVSTAT

Figure 164. Status register map; instructions dload, dloadl, dloadm, fload, load, dstore, dstorel, dstorem,

fstore, store

142

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

17.16. Load and Store Instructions, continued

17.16.1. CONFIGURATION A (THREE 32-BIT BUSES), SINGLE-PUMP

xent | int float m X Y EFADD Instruction
0 _————— Aop
1 X x dstorel .fn
2 X X X dstorem .fn
b X X fstore .fn
3 X X store .fn
T x x dloadt .y
5 X X X dloadl .fn, .x
6 X X X X dloadm .fn, .x
X X X b fload .fn, .x
7 1 x X X load .fn, .x
8: X X X dioadm .y
X X X fload .y
9 X X fload! .fn
100 X X X dlioadm .fn
o X X X fload .fn
11 X X load .fn
12 X X foad .y
13 X X dioad| .x
14 X X X dlioadm .x
L X X X fload .x
15 X X load .x
yent
0 nop
1 X X dyload! .y
2 X X X dyloadm 'y
X X X fyload ..y
3 X X yload .y
zcent
00 oo nop
1 X X dzstorel .fn
2 o ix X dzstorem..fn
X X X fzstore .fn
3 X X zstore .fn
Note: loads occur through X or Y ports. Stores occur through the X or Z ports.

Figure 165.

EXAMPLES

dstorel .f0; dzstorem .f0
fstore .f1

dloadm .y; yload! .y
dloadm .f2, .x

Figure 166.

143

17.16. Load and Store Instructions, continued

17.16.2. CONFIGURATION A (THREE 32-BIT BUSES), DOUBLE-PUMP

xent | int float m I X .y EFADD Instruction
O] 5 ; nop
1 X X X X dstore .fn
2 | X X X dstorem .fn
e X X X fstore .fn
3 X X store .fn
4 X X X X X dload .y
5 X X X X X dload .fn, .x
6 X X X % dicadm .fn, .x
X X X X fload .fn, .x
7 X X X load .fn, .x
8 X X X dioadm iy
: X X X tioad .y
9 X X X X fload .fn
10 X X X dloadm .fn
X X X fload .fn
11 X X load .fn
12 X: : , X toad .y
13 X X X X dicad .x
14 X X X dloadm .x
X X % tioad . x
15 X X load .x
ycnt
0 . S nop
1 X X X X dyload .y
2 X X X dyloadm-.y
x X X yfload .y
3 X X yload .y
zcnt
O s T nop
1 X X X X dzstore .fn
2 X X % dzstorem .fn
X X X fzstore n
3 X X zstore .fn
Note: loads occur through X or Y ports. Stores occur through the X or Z ports.
Figure 167.
EXAMPLES
dstore f3
dstorem .f5
dload 19, .x
load X
Figure 168.

144

17.16. Load and Store Instructions, continued

3164/3364

64-BIT FLOATING-POINT

DATA PATH UNITS

November 1989

17.16.3. CONFIGURATION B (SINGLE 64-BIT I/O BUS), SINGLE-PUMP ONLY

xcnt yent zent int float m X EFADD Instruction
Q 0 0 nop
1 0 0 X X X dstore .fn
2 . 0 0 X X X ~dstorem .fn
0 0 g X X X fstore .in
3 0 0 X X store .fn
4 0 0 X X dioad .y
5 0 o X X X X dload .fn, .x
6 0 0 X X X X dloadm .fn, .x
0 0 X X X X fload .fn, ix
7 0 0 X X X load .fn, .x
8 0 0 X X . dioadm .y
0 0 X X fload .y
9 0 0 X X X dioad .fn
10 0 0. X X X dloadm .fn
0 0 X X X fload .fn
11 0 0 X X load .fn
12 0: 0 X load-iy
13 0 0 X X X dload .x
14 0 0 X X X dioadm .x
) 0 X X X fload .x
15 0 0 X X load .x

Note: stores occur through the X and Z, Ioads through the X and/or Y ports.

Figure 169.

EXAMPLES

dload .f1, .x
fload .x
dstore .f0

Figure 170.

145

17.16. Load and Store Instructions, continued

17.16.4. CONFIGURATION C (SINGLE 32-BIT I/O BUS), SINGLE-PUMP

xent int float X EFADD Instruction
0 nop
1 X X dstorel .fn
2 X X dstorem .fn
o % X fstore .fn
3 X X store .fn
4 X X dioad! .y
5 X X X dload! .fn, .x
8 i X X dioadm .fn, .x
X X X fload .fn, .x
7 X X X load .fn, .x
.8 X dloadm .y
X fload .y
9 X X dload! .fn
10 X X dioadm .fn
X X fload .fn
11 X X load .fn
12 X load vy
13 X X dloadl .x
14 X P4 dloadm ..x
X X fload .x
15 X X load .x

Note: loads and stores occur through the X port.

Figure 171.

EXAMPLES

dloadl .f0
dloadm .x
dloadm .f0, .x
fstore .fO

Figure 172.

146

17.16. Load and Store Instructions, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

17.16.5. CONFIGURATION C (SINGLE 32-BIT I/O BUS), DOUBLE-PUMP

xent int float m | X .y EFADD Operation

0 nop

1 X X X X dstore .fn

2 X X X dstorem .fn

X X X fstore .fn

3 X X store .fn

4 X X X b dload:.y

5 X X X X X dload .fn, .x

6 X X X X dloadm .fn, .x
X X X X fload fn, .x

7 X X X load .fn, .x

8 X X X dloadm .y
X X fload .y

9 X X X X dload .fn

10 X X X dloadm :fn
X X X tioad .fn

11 X X load .fn

12 X X load .y

13 X X X X dload .x

14 X X X dloadm X
X X X fload . x

15 X X load .x

Note: loads and stores

occur through the X port.

Figure 173.
EXAMPLES

dicad .f0, .x
dstore .fO
fload .y

Figure 174.

147

17.16. Load and Store Instructions, continued

17.16.6. LOAD/STORE STATUS REGISTERS

INSTRUCTIONS EXAMPLES
Instruction Comment
fsrsr sreg store status register fstsr .sr0
fldsr sreg load status register fldsr .sr11
Figure 175. Figure 176.
ENCODING
FUNC BADD ABIN MBIN AAIN MAIN Operation Comment
11111b 2 0 0 0 0 fstsr .srO SR07..0 — X/Z ports (31..24)
0 0 0] 1 fstsr .sr1 SR17..0 — X/Z ports (31..24)
0 0 1 0 fstsr .sr2 SR27..0 — X/Z ports (31..24)
0 0 1 1 fstsr .sr3 SR37..0 = X/Z ports (31..24)
0 1 0 0 fstsr .srd4 SR47..0 —+ X/Z ports (31..24)
0 1 0 1 fstsr .srb SR57..0 — X/Z ports (31..24)
0 1 1 0 fstsr .sr6 SR67..0 — X/Z ports (31..24)
0 1 1 1 fstsr .sr7 SR77..0 — X/Z ports (31..24)
1 0 0 0 fstsr .sr8 SR87..0 — X/Z ports (31..24)
1 0 0 1 fstsr .sr9 SR97..0 — X/Z ports (31..24)
1 0 1 0 fstsr .sr10 SR107..0 —+ X/Z ports (31..24)
1 0 1 1 fstsr .sr11 SR117..0 — X/Z ports (31..24)
3 0 0 0 0 fldsr .srQ X Port (31..24) — SR07..0
0 0 0 1 fidsr .sr1 X Port (31..24) — SR17..0
0 0 1 0 fidsr .sr2 X Port (31..24) — SR27..0
0 0 1 1 fidsr .sr3 X Port (31..24) — SR37..0
0 1 0 0 fidsr .sr4 X Port (31..24) — SR47..0
0] 1 0 1 fldsr .sr5 X Port (31..24) — SR57..0
0 1 1 0 fldsr .sr6 X Port (31..24) — SR67..0
0 1 1 1 fldsr .sr7 X Port (31..24) — SR77..0
1 0 0 0 fldsr .sr8 X Port (31..24) — SR87..0
1 0 0 1 fldsr .sr9 X Port (31..24) — SR97..0
1 0 1 0 fldsr .sr10 X Port (31..24) — SR107..0
1 0 1 1 fldsr .sr11 X Port (31..24) — SR117..0
Note: Bits Ci2..0 must be set to zero.

Figure 177.

The instruction fldsr loads bits 31-24 from the data bus 31-24 of the data bus. Neither instruction affects the
into the specified status register. The instruction fstsr code register.
writes the contents of the specified status register to bits

148

17.16. Load and Store Instructions, continued

3164/3364

64-BIT FLOATING-POINT

DATA PATH UNITS

November 1989

BIT#

SR#

7 6 5 4 3 2 1 0

Multiplier FPEX Internat : Fast

SRO Latency Sticky Q 0 NEUT ON Rounding Mode Mode
SR1 EEE Software| gypass’on g‘;ﬁ’; 1/0 Mode
SR2 Nan INV DvVZ DNARM OVF UNF INX IOVF

EN EN EN oControl EN Control EN EN
SR3 NatJ INV pvz § DNRM OVF UNF INX IOVF
SR4 0 TOESTO MDESTO
SR5 0 Q 0 ADESTO
SR6 ASTATO MSTATO
SR7 s} 0 0 DIVDEST
SR8 0 TDEST MDEST1
SR9 0 0 Q ADEST1
SR10 : ASTATI MSTAT1

FPEX DSR

SR11 Taken: l in progress FPCN Carry DIVSTAT

Figure 178. Status register map; instructions fldsr

149

17.16. Load and Store Instructions, continued

17.16.7. LOAD/STORE CODE REGISTERS

INSTRUCTIONS EXAMPLES
Instruction Comment
fster .crO
fster creg store code register fider .cr5
fider creg load code register
Figure 179. Figure 180.
ENCODING
FUNC BADD ABIN MBIN AAIN MAIN Operation
11111b 0 0 0 0 0 nop
1 1 0] 0 0 fider .crO
1 1 0 0 1 fider .cri
1 1 0 1 0 fider .cr2
1 1 0 1 1 fider .cr3
1 1 1 0 0 fider .cr4
1 1 1 0 1 filder .crb5
1 0] 0 0] 0 fster .crO
1 0 0] 0 1 fster .or1
1 0] 0] 1 0] fster .cr2
1 0 0 1 1 fster .cr3
1 0 1 0 0 fstcr .cr4
1 0 1 0 1 fstecr .crb
Note: Bits C12..0 must be set to zero.

Figure 181.

Note: the code register should be stored before FPEX allows the code register to be overwritten by the next
TAKEN bit (SR117) is cleared, because clearing this bit instruction.

150

17.16. Load and Store Instructions, continued

3164/3364

64-BIT FLOATING-POINT

DATA PATH UNITS

November 1989

BIT#

SR#

7 6 [4 3 2 1 0

Muttiplier FPEX Internal . Fast
SRO Latency Sticky 0 0 NEUT ON Rounding Mode Mode
IEEE Software FPEX

SR Underflow Bypass on Delay i
SR2 NaN INV bvz DNRM OVF UNF INX IOVF

EN EN EN Control EN Control EN EN
SR3 NaN INV bvz DNRM OVF UNF INX IOVF
SR4 0 TDESTO MDESTO
SR5 0 0 [0 ADESTO
SR6 ASTATO MSTATO
SR7 0 0 0 DIVDEST
SR8 0 TDEST1 MDEST1
SR9 0 0 0 ADEST1
SR10 ASTAT1 MSTAT1

FPEX DSR

SR11 Taken in progress FPCN Carry DIVSTAT

Figure 182. Status register

151

map; instructions load/store code register instruction

17.17. Instruction Set Summary

In the following tables (figures 183 and 184), codes that
are not listed are reserved and must not be used.

FUNC | AAIN*| ABINt| MAIN* MBINH Mnemonic Operation Description
0 fa/.x | .fb/.y | .fa’/.x | .fbl.y fadd; fmul fe = x+y; . fd = x Xy 32-bit floating add, mul
1 fa/.x | .fb/.y | .fa/.x | .fbl.y fsubr; fmul fe =—x+y; .fd = x Xy 32-bit floating sub rev, mul
2 fa/.x | .fb/.y | .fa/.x | .fb/.y fsub; fmul fc = x-~y; . fd = x X y 32-bit floating sub, mul
3 0 0 fa/.x | .fb/.y fmul dfd = x Xy 32-bit floating mul
4 fa/.x | .fb/.y 0 0 fadd fc = x+y 32-bit floating add
0 1 fsubr fc =—x+y 32-bit floating sub rev
1 0 fsub fec = x-y 32-bit floating sub
5 0 0 fa/.x | .fb/.y fcmpeq cond = (x=y) 32-bit floating compare =
0 1 fa/.x | .fbl.y fcmp .gt cond = (x>y) 32-bit floating compare >
1 0 fa/.x | .fbl.y fcmp .t cond = {x<y) 32-bit floating compare <
1 1 fa/.x | .fbl.y femp .uord cond = 32-bit floating compare ?
(x = NaN OR y = NaN)
7 0 0 fa/.x | .fb/.y fdiv fd = x +vy 32-bit floating divide
8 fa/.x | .fb/.y | .fa/.x | .fb/.y dfadd; dfmul fc = x+y, . fd = x Xy 64-bit floating add, mui
9 fa/.x | .fb/.y | .fa/. x| .tb/.y dfsubr; dfmul fe =—x+y; .fd = x X vy 64-bit floating sub rev, mul
10 fa/.x | .fb/.y | .fa/.x | .tb/.y dfsub; dfmul fc = x-y;.fd = x X y 64-bit floating sub, mul
11 0 0 fa/.x | .fb/.y dfmul fd = x Xy 64-bit floating mul
12 fa/.x | .fb/.y 0 0 dfadd fc = x+y 64-bit floating add
0 1 dfsubr fc =-x+y 64-bit floating sub rev
1 0 dsub fc = x-y 64-bit floating sub
13 0 0 fa/.x | .tb/.y dfemp .eq cond = (X=Y) 64-bit floating compare =
0 1 fa/.x | .fol.y dfcmp .gt cond = (x>vy) 64-bit floating compare >
1 0 fa/.x | .fb/.y dfcmp .1t cond = (x<y) 64-bit floating compare <
1 1 fa/.x | .fbl.y dfemp .uord cond = 64-bit floating compare ?
{x = NaN OR y = NaN)
15 0 0 fa/.x | .fbl.y dfdiv fd = x vy 64-bit floating divide

*AAIN and MAIN = 1 selects .fa, 0 selects .x
tABIN and MBIN = 1 selects .fb, 0 selects .y

Note: To determine whether an instruction is executed in the ALU or in the multiplier, look at the
destination address in the “operation” column. if it is .fc, the instruction is executed in the ALU; if it
is .fd, the instruction is executed in the multiplier. Compare is a multiplier instruction.

Figure 183. Dyadic instructions

152

17.17. Instruction Set Summary, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

FUNC| AAIN| ABIN |MAIN MBIN Mnemonic Operation Description
16* .fa | .fo/.tn| y/x | .fb/fpass | fmul/fpass; fadd Ad,.tn = x X .fb/fpass | 32-pit floating chained mul, add
fc =.fa + .fb/.tn;
17+ fa | .fb/.tn] y/x | .fb/fpass | fmul/fpass: fsubr -f?-a -tnlextf fb/fpass | 32-pit floating chained mul, subr
-.fa + .fb/.tn;
18* fa | .fb/.tn] y/x | .fb/fpass | fmul/fpass; fsub fd, .tn = x X .fb/fpass | 32-bit floating chained mul, sub
.fc = .fa - .fb/.tn;
19* fa | .fo/.tn] y/x fb ffdmut; dfadd fd, tn=x X .fb 32 X 32 — 64-bit mul, 64-bit add
.fc = .fa + .fb/.tn;
20* fa |.fo/.tn | y/x |.fb/dfpass| dfmul/dfpass; dfadd| td, .tn = x X .fb/dfpass | 64-bit floating chained mul, add
fc = .fa + .fb/.tn;
21* fa |.fo/.tn | y/x |.fb/dfpass| dfmul/dfpass; dfsubr fd, .tn = x X .fb/dfpass | 64-bit floating chained mul, subr
fc = -.fa + .fb/.tn;
22* fa | .fb/.tn | y/x |.fb/dfpass| dfmul/dfpass; dfsub| td, .tn = x X .fb/dfpass | 64-bit floating chained mul, sub
fe = .fa - .fb/.tn;
23* fa {.fo/.tn | y/x fb fddmul; dfadd fd, .tn=x X .fb 32 X 64 — 64-bit mul, 64-bit add
fc = .fa + .fb/.tn;
24** 0 0 fa/x .fbly faddi fd =x+vy 32-bit integer add
0 fa/x .fbly fsubir fd =-x+y 32-bit integer sub rev
1 0 fa/x .fbly faddic .x .y .fd fd =x+vy+carry 32-bit integer add with carry
1 1 fa/x fbly fsubirc .x .y .fd fd =-x+vy -1+ carry 32-bit integer sub rev with carry
25** 0 0 fa/x fbly and fd =xandy 64-bit logical bitwise “and”
0 1 fa/x .fbly or fd =xory 64-bit logical bitwise “or”
1 0 fa/x .fbly xor fd =xxory 64-bit logical bitwise “xor”
1 1 0 .fbly mov .y fd =y 64-bit logical pass y operand
26** 0 0 fa/x foly frnulil fd =x X y (Is) 32-bit integer mul, low word
27** 0 0 fa/x fbly fmulim fd =x X y (ms) 32-bit integer mul, high word
29** 0 fa/x fbly min fd = min (x,y) Return smaller of two operands
0 1 fa/x .foly max fd = max (x,y) Return larger of two operands
31+ - - - - - - Monadic operations
* AAIN ABIN
0 0 Select .t0 for mul output and ALV input
1 0 Select .t1 for mul output and ALU input
0 1 Don't load .t0 or .t1; select .fb for ALU input
MAIN = 1 selects .y, 0 selects .x
MBIN = 1 selects .fb, O selects fpass or invalid
** AAIN =1 selects .fa, 0 selects .x
ABIN =1 selects .fb, 0 selects .y
MAIN = 1 selects .fa, 0 selects .x
MBIN =1 selects .fb, 0 selects .y

Figure 183. Dyadic instructions, continued

153

17.17. Instruction Set Summary, continued

BADD| ABIN | MBIN| AAIN | MAIN*l Mnemonic Operation Description
0 0 0 0 0 nop No operation
0 0 1 0 0 reset 0 — SRN (N =0, ..., 11)| Clear all status registers
0 1 0 0 0 excr instr = CR Re-execute code register
1 0 0 0 0 fster .crQ X port = CRbyte 0| Store code reg byte 0
0 0 0 1 fster .cri X port = CR byte 1| Store code reg byte 1
0 0 1 0 fster .cr2 X port = CR byte 2 | Store code reg byte 2
0 0 1 1 fster .cr3 X port = CRbyte 3| Store code reg byte 3
0 1 0 0 fster .cr4 X port = CR byte 4 | Store code reg byte 4
0 1 0 1 fster .crb X port = CRbyte 5| Store code reg byte 5
1 0 0 0 fider .cro CRbyte 0 = X port Load code reg byte 0
1 0 0 1 fider .crt CRbyte1 = X port Load code reg byte 1
1 0 1 0 flder .cr2 CRbyte2 = X port Load code reg byte 2
1 0 1 1 fider .cr3 CR byte3 = X port Load code reg byte 3
1 1 0 0 fider .cr4 CR byte 4 = X port Load code reg byte 4
1 1 0 1 flder .crb CR byte 5 = X port Load code reg byte §
2 0 0 0] fstsr .sr0 X port = sr0 Store status reg SRO
0 0 0 1 fstsi .sr1 X port = sri Store status reg SR1
0 0 1 0 fstsr .sr2 X port = sr2 Store status reg SR2
0 0 1 1 fstsr .sr3 X port = sr3 Store status reg SR3
0 1 0 0 fstsr .sr4 X port = sr4 Store status reg SR4
0 1 0 1 fstsr .sr5 X port = srb Store status reg SR5
0 1 1 0 fstsr .sré X port = sr6 Store status reg SR6
0 1 1 1 fstsr .sr7 X port = sr7 Store status reg SR7
1 0 0 0 fstsr .sr8 X port = sr8 Store status reg SR8
1 0 0 1 fstsr .sr9 X port = sr9 Store status reg SR9
1 0 1 0 fstsr .sr10 X port = sri0 Store status reg SR10
1 0 1 1 fstsr .srii X port = srii Store status reg SR11
3 0 0 0 0 fidsr .sr0 srO byte 0 = X port Load status reg SRO
0 0 0 1 fidsr .sr1 sr1 byte 1 = X port Load status reg SR1
0 0 1 0 fldsr .sr2 sr2 byte 2 = X port Load status reg SR2
0 0 1 1 fidsr .sr3 sr3 byte 3 = X port Load status reg SR3
0 1 0 0 fidsr .srd4 sr4 byte 0 = X port Load status reg SR4
0 1 0 1 fidsr .sr5 srS byte 1 = X port Load status reg SRS
0 1 1 0 fldsr .sré sré byte 2 = X port Load status reg SR6
0 1 1 1 fidsr .sr7 sr7 byte 3 = X port Load status reg SR7
1 0 0 0 fldsr .sr8 sr8 byte 0 = X port Load status reg SR8
1 0 0 1 fidsr .sr9 sr9 byte 1 = X port Load status reg SR9
1 0 1 0 fidsr .sr10 sr10 byte 2 = X port Load status reg SR10
1 0 1 1 fldsr .sri11 sri1 byte 3 = X port Load status reg SR11
4 0 0 0 fa/.x dfsqrt .fd = dsqrt(x) 64-bit floating square root
1 0 0 fa/.x fsqrt fd = sqrt(x) 32-bit floating square root
5 0 0 0 fa/.x fabsi .fd = abs(x) Integer absolute value
0 1 o] fa/.x fnegi fd = -x Integer negate
1 0 0 fa/.x faddic .x .fd fd = x + carry Integer add carry
1 1 0 fa/.x fnegib fd =-x-1+ carry Integer negate with borrow
6 0 0 0 fa/.x dfpass, dfmov | .fd = x 64-bit floating pass (IEEE “class”)
0 1 0 fa/.x dfabs .fd = dabs(x) 64-bit floating absolute value
1 0 0 fa/.x fpass, fmov fd = x 32-bit floating pass (IEEE “class”)
1 1 0 fa/.x fabs fd = fabs(x) 32-bit floating absolute value

For all monadic instructions, FUNC field is 1f(hex)

*MAIN = 1 selects .fa, 0 selects .x

Figure 184. Monadic instructions

154

17.17. Instruction Set Summary, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

BADD| ABIN | MBIN|AAIN* | MAIN1 Mnemonic Operation Description
7 0 0 0 0 clr fd =0 Clear registert
] 1] .fa/.x | dneg, neg fd =-x 32/64-bit negate (invert sign)t
1 0 0 .fa/.x | not Ad = x’ 64-bit logical negatet
1 1 0 fa/.x | mov .x fd = x 64-bit logical pass x operandt
8 0 0 fa/.x 0 dfixr fc = int(x) (round) Convert 64-bit float to int, round
0 1 fa/.x 0 dfix .fc = int(x) (truncate) Convert 64-bit float to int, truncate
1 0 fa/.x 0 fixr .fc = int(x) (round) Convert 32-bit float to int, round
1 1 fa/.x 0 fix .fc = int(x) (truncate) Convert 32-bit float to int, truncate
9 1 0 fa/.x 0 dfloat .fc = double(x) Convert int to 64-bit float
1 1 fa/.x 0 float .fc = float(x) (truncate) Convert int to 32-bit float, truncate
10 o] 0 fa/.x 0 dfcnvt, denvtf | .fc = float(x) (round) Convert 64-bit float to 32-bit float
1 0 fal.x 0 fdenvt, fenvtd | .fc = double(x) Convert 32-bit float to 64-bit float
12 0 0 fa/.x 0 sll fe = x<<1 Shift left 1 bit, 0 — Isb
0 1 fa/.x 0 scl fc = msb(x) + (x << 1) Rotate left 1 bit
1 0 fa/.x 0 sir fec = x>> 1 Shift right 1 bit, 0 — msb
1 1 fa/.x 0 sar .fc = sign(x) and (x >> 1)]| Arithmetic shift right (sign extend) 1 bit
14 0 0 fa/.x 0 dfude .fc = unwrap(x) (exact) Convert 64-bit Unrm to Dnrm, exact
0 1 fa/.x 0 dfudi .fc = unwrap(x) (inexact)| Convert 64-bit Unrm to Dnrm, inexact
1 0 fa/.x 0 fude .fc = unwrap(x) (exact) Convert 32-bit Unrm to Dnrm, exact
1 1 fa/.x 0 fudi .fc = unwrap(x) (inexact)| Convert 32-bit Unrm to Dnrm, inexact
15 0 0 fa/.x 0 dfdw .fc = dwrap(x) Convert 64-bit Dnrm to Unrm
1 0 fa/.x 0 fdw fc = fwrap(x) Convert 32-bit Dnrm to Unrm

For all monadic instructions, FUNC field is 1f(hex)

*AAIN and MAIN = 1 selects .fa, 0 selects .x

1These instructions are logical. They do not produce floating-point exceptions or set the sticky flags. They may not be
bypassed into floating-point operations.

Figure 184. Monadic instructions, continued

1

55

18. Initialization

When the 3x64 is first powered up, its state is undefined.
The state of the file registers, and more significantly,
that of the status registers is undefined. Specifically, the
I/0 mode in effect at power up is undefined. In order to
be able to load the register file and the status registers
with known values, it is first necessary to set the desired
I/0 mode. The following sequence of operations is one
suggested way of initializing the 3x64.

1. Clear the status registers using the reset instruction;
this instruction sets all bits in all status registers to
Zero.

2. Set I/O modes in status register (SR14..0), see section
5.5.1

a. The reset instruction above selects a known 1/0O
mode (SR14..0 = 0), namely single-pump un-
delayed load and single-pump undelayed store

b. Given this known I/0 mode, it is now possible to
set the desired I/O mode (if different)

3. Set all other modes in status registers SRO, SR1, and
trap enables in SR2

156

4.

Since the pipelines may contain random values and
since the DSR is being clocked by DIVCLK, while the
above operations are taking place, it is important to
wait for the DSR to empty and write its result to the
register file and to potentially update the status regis-
ter. See section 9 for latencies of DSR operations.

. Clear temporary latches (using chained multiply-add

instructions), to avoid spurious exceptions later.

. Clear SR4 through SR11, to remove the effects of

arithmetic units having potentially updated them with
meaningless values.

. Optionally load the register file and the X and Y regis-

ters with desired values.

19. IEEE Considerations

This chapter deals with issues arising from having to
comply with the ANSI/IEEE Std 754-1985, the /IEEE
Standard For Binary Floating-Point Arithmetic. The

19.1. Definitions

In this section, if the text is enclosed in quotes, this text
is a quote form the standard.

True exponent

“The component of a binary floating-point number that
normally signifies the integer power to which 2 is raised
in determining the value of the represented number.”

Biased exponent

“The sum of the exponent and a constant (bias) chosen
to make the biased exponent’s range nonnegative.” In
the text below whenever the word “exponent” is used
alone, it means “biased exponent.”

Significand

The component of a binary floating-point number that
consists of an explicit or implicit leading bit to the left of
its implied binary point and a fraction field to the right.”

Fraction

“The field of the significand that lies to ihe right of its

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

standard defines terms used and specifies data formats,
rounding options, operations, exceptions, and traps.

implied binary point.”
Binary floating-point number

“A bit string characterized by three components: a sign,
a signed exponent and a significand. Its numerical
value, if any, is the signed product of its significand and
two raised to the power of its exponent.”

Denormalized number

“A nonzero floating-point number whose exponent has
a reserved value, usually the format’s minimum, and
whose explicit or implicit leading significand bit is zero.”
Denormalized numbers are also referred to as subnor-
malized numbers or subnormals.

NaN

“Not a number, a symbolic entity encoded in floating-
point format.”

e

19.2. Data Formats

Since the standard does not specify precisely certain pa-
rameters of the single extended or the double extended
formats, leaving their definition up to a particular imple-
mentation, the 3x64 does not support these extended
formats.

The 32-bit integer format supported by the 3x64 is not
part of the standard.

19.2.1. SINGLE-PRECISION FLOATING-POINT
FORMAT

The IEEE single-precision floating-point word is 32 bits

wide and consists of three fields: a single-bit sign s, an
eight-bit biased exponent e, and a 23-bit fraction f.

1 23 widths

S| f

msb Isb msb

Isb order

157

Figure 185. Single-precision floating-point format

0 —

19. Data Formats, continued

The standard defines values of single-precision floating-
point numbers according to the following conventions:

Ife=0andf =0,

then value V = (-1)s 0) (+0, -0)

Note that the IEEE standard has two representations of
the value zero: one negative, the other positive.

Ife=0and f # 0,

then value V = DNRM Denormalized number

If 0 <e <255,

then value V = (-1) 52 e-127

) (1.9)

Normalized number

Note that 1.f above is the significand. The one to the left
of the binary point is the so called “hidden” bit. This bit
is not stored as part of the floating-point word; it is im-
plied. For a number to be normalized it must have this
one to the left of the binary point.

Ife=255and f=0,
then value V = (~1)% (o0)

(+00, —o0)

If e =255 and f # 0,

then value V = NaN Not-a-number

19.2.2. DOUBLE-PRECISION FLOATING-POINT
NUMBER

The IEEE double-precision floating-point word is 64 bits
wide an consists of three fields: a single-bit sign s, and
eleven-bit biased exponent e, and a 52-bit fraction f.

1 11 52 widths

S e f

msb Isb msb

Isb order

Figure 186. Double-precision floating-point format

The standard defines values of double-precision float-

ing-point numbers according to the following conven-
tions:

Ife=0and f=0,

then value V = (-1)° (0) (+0, -0)

Ife=0and f50,
then value V = DNRM Denormalized number

If 0 <e <2047,
then value V = (-1)5(2871923) (1.f)
Normalized number

If e = 2047 and f = 0,

then value V = (—l)s (o0) (+o0, —o0)

If e = 2047 and f 5 0,

then value V = NaN Not-a-number

19.2.3. INTEGER FORMAT

The IEEE standard does not specify an integer format.
The 3x64, however, does support operations on 32-bit
two’s complement integers. The format is given in figure
187.

_p31 230 220 22 21 20 | weights

msb Isb order

158

Figure 187. 32-bit integer format

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

19.3. Number Types Used to Implement the IEEE Standard

19.3.1. NORMALIZED NUMBERS (NRM).

Most calculations are performed on normalized num-
bers. For single precision, they have an exponent range
from 0000 00012 = 110to 1111 111102 = 25410 and a
normalized significand (hidden bit is 1.)

19.3.2. ZERO

The IEEE zero has all fields except the sign field—the
exponent, fraction, and the hidden bit—equal to zero.
The sign bit determines the sign of zero.

19.3.3. INFINITY

Infinity has a maximum exponent (255 for single preci-
sion, 2047 for double precision) and a zero fraction.
The sign bit determines the sign of the infinity.

19.3.4. DENORMALIZED NUMBERS

Denormalized numbers are those numbers whose mag-
nitude is smaller than the smallest magnitude represent-
able in the format. They have a zero exponent and a
denormalized nonzero fraction. Denormalized fraction
means that the hidden bit is zero.

The functional units in the 3x64 cannot directly operate
on denormalized operands. Denormalized operands
have to be converted to wrapped normalized format
(WNRM) before they can be used in the arithmetic units.

19.3.5. WRAPPED NORMALIZED NUMBERS
(WNRM)

A wrapped number is created, using the ALU wrap in-
struction (see section 17.10), by normalizing the frac-
tion field of a denormalized number and subtracting
from the exponent the shift count. Normalization is ac-
complished by left-shifting the fraction until the hidden
bitis a 1. The value of the wrapped exponent is equal to

[1 - the shift count] and is represented in two’s comple-
ment.

19.3.6. UNROUNDED NORMALIZED NUMBERS
(UNRM)

A UNRM is a result of an operation that has magnitude
less than the minimum representable normalized num-
ber. A UNRM has a fraction field, a wrapped exponent,
and a hidden bit of one. The minimum UNRM is the re-
sult of the multiplication of two minimum denormalized
numbers. UNRMs are turned into DNRMs using the ALU’s
unwrap operations (see section 17.10).

19.3.7. NOT-A-NUMBER (NaN)

NaNs do not represent numerical values but are inter-
preted as signals or symbols. They are used to signal in-
valid operations and as a way of passing status informa-
tion through a series of calculations. NaNs arise in one
of two ways: they can be generated by the 3x64 upon an
invalid operation or they may be supplied by the user as
an input operand.

The NaN generated by the 3x64 (the default NaN),
whether single- or double-precision has a zero sign bit,
an exponent of all 1’s, and a fraction of all 1’s.

Upon an fpass operation, an operand NaN at the input
is passed to the result unchanged.

Upon an fabs operation, an operand NaN is preserved
in the result with the sign of 0.

Logical operations treat NaNs as they would any other
string, i.e. as a logical entity.

19.3.8. SINGLE-PRECISION FORMATS
SUPPORTED BY THE 3x64

The table below is a summary of each number type sup-
ported by the 3x64 in order to implement the IEEE stan-
dard. A similar table for double precision can be created
by extension.

159

19.3. Number Types Used to Implement the IEEE Standard, continued

Operand Biased Fraction Hidden Value
Exponent Bit
Nan 255 #0 X None
Infinity 255 0 X 1) (00)
Zero 0 0 0 (-1)%(c0)
127 _
NRM.MAX 254 11...11 1 -2y @2-2%)
-126
NRM.MIN 1 00...00 1 1727
s _e-127
NRM 1 to 254 Any 1 -1)%(2) (1.5)
-126 R
DNRM.MAX 11...11 1527y (1 -2
-149
DNRM.MIN 00...01 RN
DNRM Any %272 (0.9)
s _-127 Y
WNRM.MAX 0 11...11 1 -1y @2) @2-22)
-149
WNRM.MIN 22 00...00 1 -T2)
s e-127
WNRM 0 to -22 Any 1 -1) (2) (1.6)
s -127 23
UNRM.MAX 0 11...11 1 1)@) 2-22
-298
UNRM.MIN 171 00...00 1 172
Figure 188.

19.4. Rounding

“Rounding takes a number regarded as infinitely precise
and, if necessary, modifies it to fit in the destination’s
format while signaling the inexact exception.”

The 3x64 supports all rounding options (see section
12.3.2 for encoding). Directed rounding options—
round toward plus or minus infinity and round to zero—
statistically introduce a small bias in the direction of the

160

rounding. Round to nearest introduces no statistical
bias.

Round to nearest is the standard’s default. The
representable value nearest the infinitely precise result is
delivered. If the two nearest representable values are
equally near, the one with the LSB of zero (i.e. the even
number) is delivered.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

19.5. Exceptions

The 3x64 generates all five exceptions specified by the
standard.

Invalid operation INV

Division by zero DvZ

Overflow, floating-point OVF

Overflow, integer IOVF

Underflow UNF

Inexact INX
Figure 189.

Exception information is signaled on the Sa..o pins (see
section 11) or it can be obtained from the Status Regis-
ter (see section 12).

19.5.1. INVALID OPERATION (INV)

“The invalid operation exception is signaled if an oper-
and is invalid for the operation to be performed.” The
result is a NaN,” provided the destination has a floating-
point format.” The 3x64 will generate the invalid
operaion exception for the following operations:

An operation involving a NaN operand
(see section 19.3.7).

Magnitude subtraction of

infinities (+o0) + (-00)
Multiplication 0 x co
Division 0/0 or oo/

Square root of a negative argument”

Comparison by way of predicates involving
> or <, without ? (unordered) when the
operands are unordered

* Note that SQRT (-0) does not generate an exception.
The result is specified by the standard as -0.

Figure 190.

19.5.2. DIVISION BY ZERO (DVZ)

If the divisor is zero and the dividend is a finite nonzero
number, then the division by zero exception is signaled.
The result is a correctly rounded infinity.

19.5.3. OVERFLOW (OFV, IOVF)

“The overflow exception is signaled whenever the desti-
nation format’s largest finite number is exceeded in
magnitude by what would have been the rounded float-
ing-point result were the exponent range unbounded.”
The result is either positive or negative infinity or the
largest positive or negative finite (i.e normalized) num-
ber. This result is determined by the rounding mode and
the sign of the intermediate result as follows:

1. “Round to nearest carries all overflows to oo with the
sign of the intermediate result.”

2. “Round toward zero carries all overflows to the for-
mat’s largest finite number MAX.NRM with the sign
of the intermediate result.”

3. “Round toward -co carries positive overflows to the
format’s largest positive finite number dAMAX.NRM,
and carries negative overflows to -co .”

4. “Round toward +oo carries negative overflows to the
format’s most negative finite number dMAX.NRMf,
and carries positive overflows to +oco .”

Overflow is also generated upon a floating-point to inte-
ger conversion when the result overflows the 32-bit inte-
ger format (integer overflow, IOVF).

19.5.4. UNDERFLOW (UNF)

Underflow is generated when the magnitude of an op-
eration’s result after rounding is less than the smallest
representable finite number (NRM.MIN). A result of ex-
actly zero does not underflow.

19.5.5. INEXACT (INX)

The inexact exception is generated whenever there is a
loss of accuracy (or significance) in the result. The 3x64
computes results to higher precision than the number of
fraction bits in the format. If any of the fraction bits to
the right of the LSB was one prior to rounding, the INX
exception is signaled.

161

20. Glossary

This section defines potentially confusing or ambiguous
terms.

CURRENT VS. NEXT CYCLE;
CURRENT VS. NEXT INSTRUCTION

Where possible, instructions and corresponding
clock cycles are identified by a number, and there is a
one-to-one relationship between these numbers. For ex-
ample, instruction C1 is clocked on the rising edge of
cycle 1, instruction C3 — on the rising edge of cycle 3.
Where instruction and clock cycle numbers are not used
to describe instructions, this document uses the terms
“current” and “next” to identify instructions at the code
inputs relative to some control input as defined in the
diagram below.

STICKY BITS AND STICKY OUTPUT SIGNALS

In this document, the term “sticky bits” is used to refer
to any status register bit that, once set as a result of an

operation, remains set until explicitly cleared. In par-
ticular, all floating-point exception bits are sticky. An
output signatl is sticky, if, once asserted as a result of an
operation, it remains asserted until explicitly caused to
be de-asserted.

LATENCY

The term “latency” is used in this document in two
equivalent ways: with respect to data and with respect to
instructions. In terms of data, latency is measured from
the rising edge that clocks input data into a WTL 3x64
input port to the rising edge that clocks the result into a
register outside the 3x64. In terms of instructions, la-
tency is measured from the rising edge that clocks the
first instruction into the code port to the rising edge that
clocks in the next instruction which can use the result of
the first instruction as one of its operands. The unit of
measurement is either clock cycles or time
(nanoseconds); the exact meaning is established by the
context.

Current
Cycle

___+__

Next
Cycle

—

CLK
1 | I
Code . Current Next
Input Instruction Instruction
T T |
| | |
Control | | |
Input | \ i i
I } #
| | |

Figure 191.

162

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

21. Specifications

S T¥] o] 1) Y] <- Vo 1= T -0.5t0 7.0V
INPUL VORAGE . .ot e et e e -0.5V to VCC
OUIPUL VO AGE . . o e e e -0.5V to VCC
Operating temperature range (TCASE) ...ttt it e 0° to 85° C
Storage temperature ranget i -65° C to 150° C
Lead temperature (10 SeCONAS) ... vttt ittt i ittt et it 300° C
VT o (o T T (=T T 0T =T = ([= 155° C

Figure 192. Absolute maximum ratings

PARAMETER MIN MAX UNIT
Vec Supply voltage 4.75 5.25 \
low High-level output current -0.4 mA
lo. Low-level output current 4.0 mA
Tease Operating case temperature 0 85 °C

Figure 193. Operating conditions

21.1. DC Specifications

PARAMETER TEST CONDITIONS MIN MAX | UNITS

V,, High-level input voltage Vee = MAX 2.0 \
V.. Low-level input voltage Vee = MIN 0.8 v
Ve High-level clock and divide Vee = MAX 2.4 \

clock input voltage
Vi c Low-level clock and divide Vee = MIN 0.8 \

clock input voltage
Vou High-level output voltage Vee = MIN, 15, = MAX 2.4 v
VoL Low-level output voltage Vee = MIN, 15 = MAX 0.4 \
llH High-level input current Vee = MAX, VN = Ve 10 HA
I Low-level input current Vee = MAX, Viy = 10 KA
loz. Tri-state leakage current low | Voo = MAX, Vi = 10 pA
lozn Tri-state leakage current high | Voo = MAX, V iy = 10 MA
lcc Supply current Vee = MAX, Ty = MIN 400 mA
Cn™ Input capacitance 15 pF
Couc Clock input capacitance 50 pF
Cout Output capacitance 15 pF
* Characterized at 1 MHz. Not tested.

Figure 194. DC specifications

163

21.2. AC Specifications and Timing Diagrams

ADVANCE
FINAL SPECIFICATIONS SPECIFICATIONS
3164-100 3164-75 3164-60 3164-50
3364-100 3364-75 3364-60 3364-50 UNIT
DESCRIPTION Either two- or
Elthe«iat‘v;gc\c;rnt‘grdeee cycle three-cycle NOTES
latency mode
MIN | MAX| MIN | MAX] MIN| MAX] MIN MAX
Tey CLK cycle time 100 75 60 50 ns
Ten CLK HIGH time 45 DC 34 | DC 28 DC 21 DC ns
Tel CLK LOW time 45 DC 34 | DC 28 DC 23 DC ns
Tpey DIVCLK cycle time 50 37.5 30 25 ns
Tocn PIVCLK HIGH time 22 16 13 11 ns
TpoeL DIVCLK LOW time 22 16 13 1 ns
Ter CLK and DIVCLK rise time 4 4 4 4 See Note 8 ns
Ter CLK and DIVCLK fall time 4 4 4 4 See Note 8 ns
T DIVCLK to CLK skew
¢ (DIVCLK before CLK) o| 10 o] 10]o0 9 0 9 See Note 8 ns
Tgy Setup time 15 15 15 10 ns
(from rising edge)
T Setup time
s2 (from falling edge) 15 15 15 10 ns
Tgz Setup time for NEUT-, 15 10 10 10 ns
STALL-, ABORT- inputs
Ty Hold time for all inputs other 3 3 3 3 ns
than NEUT-, STALL-,
ABORT-
T Hold time for NEUT-
H2 [o] ime for , 5
STALL-, ABORT- inputs S 5 S ns
Output delays (X and Z buses)
Single-pump
TD1 Undelayed store 85 60 55 46 ns
T, Delayed store 85 60 55 46 ns
Tps Delayed data store 30 30 25 21 ns
Double-pump
TD4A/BDeIayed data store from 85/30 60/30 55/25 Note 7 See Note 1 ns
two successive CLK edges
T,o Instruction-driven minimum
output enable times (X & Z 5 5 5 5 See Note 8 ns
buses)
Tyo Output valid time 5 5 5 5 ns

Figure 195. AC specifications: guaranteed switching characteristics over commercial temperature range and operat-
ing conditions (continued on next page)

164

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
21.2. AC Specifications and Timing Diagrams, continued

ADVANCE
FINAL SPECIFICATIONS pDVANCE |
3164-100 | 3164-75 3164-60 3164-50
3364-100 | 3364-75 3364-60 3364-50
DESCRIPTION Either two- or UNIT

Either two- or three-cycle

latency mode three-cycle NOTES

latency mode
MIN [MAX] MIN | MAX]| MIN | MAX | MIN MAX

Instruction-driven minimum
output disable times
(X and Z buses)

Single-pump
Toz; Undelayed store 40 40 35 30 See Note 8 ns
TOz2 Delayed store 40 40 35 30 See Note 8 ns
Tozs Delayed data store 30 30 25 21 See Note 8 ns
Double-pump
Tozs Delayed data store 30 30 25 Note 7 See Note 8 ns

Output delays—other outputs

Tps FPEX- delayed, single- or 30 30 25 23 ns
double-pump
TDG FPEX- undelayed, single- 85 65 54 Note 2 ns
pump only
TD7 FPCN 30 30 25 23 ns
T Status (from two
D8A/B successive CLK edges) 85/30 65/30 54/25 “g:g %/ See Note 1 ns
T Tri-state bus enable time
ENA Output Enable (OEX-, 20 20 20 20 ns
OEZ-) transition to bus valid
Tpg Tri-state bus disable time
Output Enable (OEX-, 20 20 20 20 ns
OEZ-) transition to bus
disabled

Notes: 1. Use the worst (i.e. the latest) of the TD4Aa/TD8A after the rising edge or the Tp4B/TD8B after
the falling edge of the CLK.

. FPEX undelayed is not available in this speed grade.

. The status comes out on the S3 g pins in two phases (see figures 58 and 197).

. Worst case over time and temperature range.

. Input levels are 0.4 V and 3.5 V unless otherwise specified.

. Timing transitions are measured at 1.5 V unless otherwise noted.

. Not available in this speed grade. See section 21.4.

. This parameter is guaranteed, but is not tested.

oO~NOON S WN

AC TEST CONDITIONS (Notes 4, 5, and 6)

VIH = 3.5V VoH =2.8V, loH=-1.0mA _ °
_ + 59 3 = -
Vce= 5V 5% ViL = 0.4V VoL = 0.4V ol = 4.0 Tcase 0-85C

Figure 196. AC specifications: guaranteed switching characteristics over commercial temperature range and operat-
ing conditions

165

21.2. AC Specifications and Timing Diagrams, continued

CLK 1 2
Thy Tsz | Thi
« v [| |
BUS — N <)
INPUTS —
Thy
g
gODE X y,
us
INPUTS — d ___>
Tz
-
STALL-
NEUT- — N (:>_
ABORT- 4 N
INPUTS
BUS T T
OUTPUTS Zo‘_ "°<_
RS o
DELAYED STORE TD1 ,TD2 TOZ1 ,TOZZ
)
g
Tz0 Tvo
—
SINGLE-PUMP < VALID
DELAYED-DATA
STORE
Toa TOZG
>
Tzo Tvo Tvo
—> | > | > =
72N 72NN
o E e oo YEB o
STORE
Tpas Toas Toza
Toaa
-3 :

Figure 197. AC timing (continued on next page)

166

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
21.2. AC Specifications and Timing Diagrams, continued

CLK 1 2 3
Tvo
— |&
CNDELAYED
OuTPUT —
Tos
rlf
Tvo
—>»
FPEX-
Y
A C
Tos
>
Tvo TVO
— — |
\ L
OUTPUT C / _
Tor
o e
Tvo TVO
> | > |
S50 OUTPUT
O EDEBEDE 4
conouRmENT D o)
ALU OPERATIONS
Toes Toes
rf—] —>
Tosa
e f
Tvo
> |
53_0 OUTPUT
O
MULTIPLIER-ONLY OR _/ _
ALU-ONLY
OPERATIONS Toss
Tosa
e f

Figure 197. AC timing, continued

167

21.2. AC Specifications and Timing Diagrams, continued

ey
TcH TcL
3.5V
2.4V
CLK 2.0V - - - - |/ 2.0V
0.4V — L_T _4 . 0.8V
—-w le—TDC - CF b TcR
TDbCcy
TDCH TocL
3.5V
2.4V
DIVCLK 2.0V - \I - 2.0V
0.8v
0.4V ==
—C -E:R-—
Figure 198. Clock timing
CLK 2.0\17
T Delay measurements
are made with

reference to 1.5V
threshold

Signat

......

Figure 199. Reference levels in delay measurements

OUTPUT 3.5v
ENABLE
(OEX- or OEZ-}
2.0v - - 2.0v
0.4v —
Tois

\ 0.2V

HIGH
BUS \ I IMPEDANCE

OUTPUT VALID /¥ 2.2V)
/| o.2v

Figure 200. Tri-state timing

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
21.3. I/0O Characteristics

500 O

Output
pin

Figure 201. AC test load

21.4. The 3164-50

Double-pump delayed data store is not available in this ~ which exception has occurred without using S3..0, use
speed grade: the timings of Tpsa/B and Tpz4 are not delayed FPEX- to signal the occurrence of an excep-
appropriate for use at 50 ns. Double-pump data load is tion, then examine internal status registers (SR0..11).
still available.

The status output on the S$3..0 pins is not valid for con-
current operations in this speed grade. To determine

169

21.5. Pin Configurations

A B C D E F G H J K L M N P R
15 F4 GND F3 | XCNTO| XCNT1JABORTH4 FO | CADD3| CADDO| AADD4] AADDO | DADD3 | DADD2|EFADD3| GND | 15
14 NC X31 GND F1 ,_g\F;V XCNT2| NEUT- | cCADD4 | AADD3 | AADD2| DADD4 | DADD1 |EFADD4|EFADDO] GND | 14
13 NC X29 X30 GND F2 | XCNT3|STALL-| CADD2 | CADD1| AADD1{ DADDO |[EFADD2|EFADD1f VCC | GND | {3
12 x27 NC NC vec | aNo gD |12
11 NC X26 x28 GND | GND | GND | 11
10 NC X25 NC aNp | GND GND | 40
9 vce | xes vce GND | gND GND | g
3164
8 x23 x22 GND 15%x 15 144-PIN PGA memn | GND | Gro 8
TOP VIEW
7 NC x20 x21 MAIN | CLK | ABIN 7
6 NC NC X19 GND |BADD4| AAN | g
5 NC NC X17 FPCN | BADDO | BADD3| 5§
4 X18 X16 GND vce | FPEx- | BADD2| 4
3 NC GND X15 X14 X13 NC \ele} vce 82 S0 NC GND | OEX- | TE |BADDI| 3
LOW
DIV
2 NC NC NC X12 X11 NC X9 X7 X5 S1 x2 X1 NC CLK | GND 2
1 GND NC NC NC X10 X8 NC NC X6 S3 X4 X3 NC X0 NC 1
Pin A1
Identifier A B C D E F G H J K L M N P R
Notes:
1. NC = not connected; pins so marked must be left unconnected.
2. Pins P3 and E14 should be driven low, either by connecting them to ground, or by connecting
them to a trace network which is connected to the ground plane at one point.

Figure 202. 3164 pin configuration

170

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
21.5. Pin Configurations, continued

17 GND | GND | 217 | x18 | Zz21 | x20 |YoNTH Zz22 | Z24 | z26 fyeNTy z27 | %26 | z29 | x30 F4 | aND | 17
16 215 | GND | x17 | z18 | x19 | xo1 | vec | xe2 | x24 | x5 | vec | xe8 | zes | z30 | xaq F1 GN\D | 16
15 x15 | x14 | z16 | x16 | z20 | z19 vec | xe3 | z23 | z25 | vec | xo7 | xe0 | zai F2 |zenTi| F3 15
14 | xi3 | z13a | z14 xeNTolxenTa | xentz2| 14
13 z12 | z11 | xi2 ISTALL{XCNT1| NEUT-| 13
12 X11 z10 | x10 Yo FO |ABORT{ 12
11 29 X8 X7 vz |CADD4| cADD3| 14
10 x9 | vec | z8 caDD1|caDD2| 1 10

3364
9 z7 | vee | zs 17x17 168-PIN PGA CADDO| AADD3| v3 9
TOP VIEW
8 x5 Z5 %) IAADD 1| AADD2| Y4 8
7 s2 s1 X6 AADD4| AADDO| DADD4| 7
6 za S0 X4 DADD2| DADD3| vs 6
5 x3 x2 z3 Ye |DADD1| DADDO| §
4 z2 Z1 X1 EFADDY Y7 |EFADDA 4
3 20 xo | GND | FPCN [BADD2|BADD4| Y28 | Y30 | 26 | y25 | v27 | v2o | v17 | v12 | Y9 [EFADD4EFADDY 3
2 gl‘_\{(NC | GND |FPEX-|BADD3} CLK | ABIN | MAIN| Y29 | Y24 | v21 | vi9 | vi5s | vi3 | vi1 | vce |erabpd 2
1 OEx- | oez-| GND |BADD1|BADDO|ZCNTO| AaNn | Y31 [MBIN| Y22 | va3 | vis | vie | vi4a | yio | vec | ve 1
Pin A1

Identifier o g C D E F G H J K L M N P R T U

Notes:

1. NC = not connected; pins so marked must be left unconnected.

Figure 203. 3364 pin configuration

171

21.6. Physical Dimensions

3164 144-PIN GRID ARRAY

Symbol DIMENSIONS
—{ A INCHES MM
EZJ 1‘”" A1 | 0.080%0.012 2.03 * 0.30
O@@@@@@@@ggg =
066666600606060| & A2 0.180 typ. 4.57 typ.
[oJol0] OO -f—
360 | | 505 | A3 | 0.050 1.27
636 253 | xouan
666 600 D 1.5755q.+ 0.020 | 40.0 sq. + 0.51
[010]0} , \ [0J0]0] — —
QOO QOO STAND
8 85000000000006 | OFF E1 1.400 sq.* 0.014 | 35.56 sq. + 0.36
[ololololololololololololololo) il -
{otolc]ololelelsloteletolate)
p ; lu E2 | 0.050 dia. typ. 1.27 dia. typ.
BOTTOM VIEW SIDE VIEW TOP VIEW E3 0.018 +0.002 46 + 0.05
d 0.070 dia. typ. 1.78 dia. typ.
e 0.100 typ. 2.54 typ.
Figure 204. 3164 physical dimensions
3364 168-PIN GRID ARRAY
Symbol DIMENSIONS
INCHES MM
Al 0.095 +0.013 2.41 +0.33
A2 0.180 typ. 4.57 typ.
A3 0.050 typ. 1.27 tvp.
D 1.750 sq.+ 0.022 44.5 sq.+ 0.56
E1 1.600 sq. + 0.016 40.6 sq.+ 0.41
E2 0.050 dia. typ. 1.27 dia. typ.
BOTTOM VIEW SIDE VIEW TOP VIEW E3 0.018 +0.002 .46 + 0.05
d 0.065 dia. typ. 1.65 dia. typ.
e 0.100 typ. 2.54 typ.

Figure 205. 3364 physical dimensions

172

Appendix A. The 3x64 in the XL Environment

A.1 . WEITEK XL-Series

The WEITEK XL-Series is a family of three VLSI proc-
essors: the XL-8000, a high-speed 32-bit integer proces-
sor; the XL-8032, a single-precision floating-point pro-
cessor, and the XL-8064, a double-precision
floating-point processor.

These processors provide the performance of bit-slice
components and are supported by high-level language
development tools. These include optimizing C and
FORTRAN compilers which produce code that is then
further improved by an instruction parallelizer. The pro-
grammer remains free to create custom microcode rou-
tines for peak performance. Simulators, prototyping
boards, and debugging tools are all provided.

This appendix is dedicated to the 8064 double-precision
floating-point processor. Further information may be
found in the XL-Series Overview, the XL-Series Hard-
ware Designer’s Guide, the XL-Series Programmer’s
Reference Manual, the XL-8136 Data Sheet and the
XL-8137 Data Sheet.

The XL-Series double-precision floating-point processor
is available in two versions; the XL-8164 has a 32-bit
data bus and the XL-8364 has a 64-bit data bus. The
XL-8164 is a simple upgrade from the single-precision
XL-8032; the XL-8364 offers the enhanced perform-
ance of a full 64-bit data bus. It is possible to design a

173

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

printed circuit board that will accept both the XL-8032
and XL-8164 as jumper-selectable options. Details of
such a design are given in the WEITEK publication,
Supporting XL-8032/8064 Compatible Designs.

Both the XL-8164 and XL-8364 processors consist of
three interconnected VLSI components:

O XL-8136 program sequencing unit (PSU)
O XL-8137 integer processing unit (IPU)

© 3164 floating-point unit (FPU) (XL-8164 only) or
3364 floating-point unit (FPU) (XL-8364 only)

Each of these components is manufactured in high-den-
sity, low-power CMOS. The XL-8136, XL-8137 and
3164 are delivered in 144-pin grid array packages; the
3364 is delivered in a 168-pin grid array package. Un-
like traditional microprocessors, the XL-8164 and
XL-8364 are not constrained by the limits of circuit den-
sity or bus bandwidth imposed by a single chip in a small
package. Consequently, bit-slice performance levels can
be obtained both for integer and floating-point opera-
tions.

The XL-Series simplifies system design. Signals and sys-
tem buses need only be connected as shown in figures
206 or 207 in order to create the X1L-8164 or XL-8364,
respectively.

R A A e]
A.1. WEITEK XL-Series, continued

Address
L, Code
A 32 Memory
System
STALL-
Code Bus
64
$
........................ m Ty T T T T LT T T T YT TTTT e ey errers /: m/
A 32 I 1 A 32
o STALL- AC c STALL- C STALL-
— WREN- XL-8137 COND COND XL-8136 FPCN FPCN
Integer Program 3164
Processing Sequencing Floating Point
Unit Unit Unit
AD 4-?-. AD EXT4- FPEX
ABORT- D NEUT- OP NEUT- ABORT- NEUT- X ABORT-
A 32 /{32
_:z T x ... :

Abort
Logic
d %
14 A 32 32
Control Data Bus
Data
Memory
System
WREN- ABORT-
Address

!

Figure 206. XL-8164 schematic

174

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
A.1. WEITEK XL-Series, continued

Y

Address

Code
Memory
System

STALL-

Code Bus

64

C STALL-

: L c STALL- C sta- | H
1 {wren- XL-8137 XL-8136
Integer COND COND Program FPCN FPCN 3364
Processing Sequencing Floating Point
Unit AD |-t A0 Unit EXT4- FPEX Unit
ABORT- D NEUT- NEUT- OP ABORT- NEUT- X Y/Z ABORT-

| I ! P A A

L b
A 2 A s { A32 132

Abort
ABORT-~ oP STALL- Logic
N—ad A2 C [
WEL-OEL~ {_TH-HTL- OEH- WEH- I
. 4
/
A 4

IR

Y

DATAL OEL : OEH DATAH
1
Data ABORT-
Memory
N LOW : HIGH 1
L WEL- Address WEH- '~

}

Figure 207. XL-8364 schematic

175

A.2. Buses

Four high-bandwidth system buses are provided by the
architecture.

CODE BUS

A 64-bit code bus feeds the code input ports of the PSU,
IPU and FPU with the next instruction. The PSU and
IPU share 32 of the 64-bits; this half of the code word
directs program control operations, address generation,
loads and stores and integer arithmetic. The remainder
of the code word directs floating-point operations. The
designer may choose to lengthen the code word to add
custom extensions to the processor architecture.

DATA BUS

If an XL-8164 design is required a 32-bit data bus is
shared by the IPU and FPU. It allows bytes, 16-
and 32-bit integers and 32-bit floating-point numbers to
be transferred between the processing units and data
memory. 64-bit floating-point numbers are handled by
two successive 32-bit transfers.

Alternatively, an XL-8364 design may be employed to
provide a 64-bit data bus which is shared by the IPU and
FPU. It allows bytes, 16- and 32-bit integers, 32-bit
floating-point numbers and 64-bit floating-point values
to be transferred between the processing units and data
memory. To obtain the extra performance furnished by
this 64-bit bus, a few additional logic devices are re-
quired.

CODE ADDRESS BUS

A 32-bit code address bus carries the address of the next
instruction from the PSU to the code memory. A word
address is provided allowing up to 4 Gwords of code
memory.

DATA ADDRESS BUS

A 32-bit data address bus carries the address of the next
data read or write. The address is generated by the IPU
and the data may be transferred to or from the IPU or
FPU as required. A byte address is provided allowing up
to 4 Gbytes of 32-bit-wide data memory {XL-8164] or
64-bit-wide memory [XL-8364]. Support for accessing
bytes, half-words, words and double-words is provided
by the IPU.

The 3x64 are designed to connect directly to the code
and data buses alongside the other components of the
XL-8164/XL-8364. When driven by the same system
clock, the code word is sampled by all three components
simultaneously and the data bus is driven or sampled at
the same time in the cycle no matter which component is
transferring information.

The code and data memory systems may be imple-
mented with SRAM, static column DRAM or inter-
leaved DRAM. Both code and data caches may be
added to XL-8164/XL-8364 systems for higher per-
formance. More details are provided in the XL-Series
Hardware Designer’'s Guide.

176

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

A.3. Instruction Format

Both the XL-8164 and XL-8364 have a 64-bit
microword. The bits that are directed to the 3x64 are
shown in figure 208.

The lower 32-bits of the control word are shared by the
IPU and the PSU. Bits 23..0 normally define the IPU
operation. Bits 31..24 define the instruction flow control
performed by the PSU. Five of these control
bits, 28..24, are also used as the floating-point register
address (EFadd) when floating-point load and store op-
erations are performed. This saves on code bits and in-
sures that the FPU and IPU never compete for the data
bus.

The 3x64 has 42 code port inputs. When used in the
XL-8164/XL-8364 configuration, the Eadd/Fadd field
is tied to the appropriate bits of the PSU code input. The
YCNT and ZCNT bits are held to GND as only the XCNT
field controls data transfers. In order to further reduce
the code word size to the 37 bits required by the
XL-8164/XL-8364 format, the most-significant bit of
address fields Cadd and Dadd is shared. This only has
an impact when multiply and ALU functions are exe-
cuted in parallel (chained instructions and mul/add) in
which case the assembly language programmer has to
insure that the two destination registers lie in the same
half of the register file.

63 55 47 39 31 23
-_———T————— |
¢ |
m|B M| S AlA |
F4..0 AADD4..0 [B]D|DADDS3..of 4| A] caDDS. 0| BADDS..0| XCNTS. .0 812 (seq) [EFADD4..0 |
D D
Y N|p N[N |
4 I
—_———— Jd
5 5 1 1 4 11 4 4 4 1 1 3 5
Notes: 1. Dashed lines indicate bits in the sequencer field
2. The meaning of each bit field is described in the body of this data sheet
3. In each bit field, bit 0 lies at the lowest address.

Figure 208. XL-8064 code word
A.4 . Load/Store Model

The XL-Series has a consistent load/store model regard-
less of processor configuration. Each processing unit has
its own register file: register moves between the IPU and
FPU must be made through the data memory. Each of
these register files is multi-ported and each register may
be the operand source or result destination of any in-
struction implemented by the unit. When an instruction
takes more than one cycle to execute, the registers that
supply its operands and receive its result cannot be
modified until it has been completed. This allows any
instruction to be resubmitted for execution with its origi-
nal state after an interrupt.

Transactions between the register files and data memory
are performed with dedicated load/store operations.
The only restriction on loads and stores is that the oper-
ands of an operation must be loaded before it is exe-
cuted and that it shall have completed before its result is
stored back to memory. This allows the parallelizer con-
siderable freedom to optimize register usage and 1I/O
transactions.

An example of the normal sequence of operation is
given below. This example leaves several free cycles in
which other loads, stores and calculations could be per-
formed in parallel. In this particular case, single-length
floating-point values are being transferred on the 32-bit-
wide XL-8164 data bus. Double-length floating-point
values have the same timing on the XL-8364’s 64-bit
data bus and the case of such doubles on the XL-8164 is
shown in the next section.

addr .ra
fload .fx
fabs .fx, .fy
addr .rb
fstore .ty

The load and store modes of the 3x64 are selected to
produce the same timing in the FPU as in the IPU. For
loads, the address is presented on the AD bus at the be-
ginning of a cycle and the data is expected to be avail-
able on the D bus at the end of that cycle.

177

A.4. Load/Store Model, continued

For stores, the address is presented on the AD bus at the
beginning of a cycle and the data is driven onto the D
bus during the next cycle.

Because the addr and fload instructions can be executed
in parallel, they may be pipelined to support contiguous
fload operations (one per cycle). The fstore operation,
on the other hand, requires two cycles: the second cycle
is filled with an I/0 nop. This automatically prevents bus
turnaround conflicts when floads follow immediately af-
ter fstores. It has minimal impact on overall perform-
ance because loads usually outnumber stores and be-
cause the parallelizer can organize 1/O transfers
efficiently. If WEITEK software tools are used, then this
load/store model will be followed.

A.5 . Data Bus Implementation

XL-8164

The XL-8164 has a 32-bit data bus. It must be con-
nected to the D port of the XL-8137 IPU, the X port of
the 3164, and the data memory system bus. The 3164 is
placed in configuration C (see the main body of this data
sheet) by setting its status registers as shown below. The
XL-8164 bus is identical in operation to the XL-8032
bus. Double-precision variables are loaded into the X
port of the 3164 by two successive 32-bit floads; fstores
proceed in a similar manner. Double-precision values
are stored on even boundaries, with the least-significant
half occupying the lowest address (A2=0).

The following code sequence will load a double-preci-
sion floating-point word to the 3164’s Y register:

addr+ .ra, 1, .word, .ra
addr .ra, 1, .word; dloadi .y
dloadm .y

More details on the assembler syntax for double-preci-
sion loads and stores may be found in the Programmer’s
Reference Manual.

XL-8364

The XL-8364 has a 64-bit data bus. This bus connects
the 32-bit D port of the XL-8137 integer processing unit,

178

the 64-bit X, Y/Z port of the 3364 and the 64-bit-wide
system memory. This may be seen in figure 207.

The 3364 is placed in configuration B (see the main
body of this data sheet) by setting its status registers as
shown below. In this mode, the X port transfers the
least-significant half of double-precision floating-point
values and any 32-bit integer values. The Y and Z ports
are tied together to produce another 32-bit I/O port
which transfers the most-significant half of double-preci-
sion floating-point values and any single-precision float-
ing-point values.

In memory, double-precision floating-point values are
aligned on 64-bit boundaries, whereas single-precision
floating-point values and integers are aligned on 32-bit
boundaries. The least-significant half of the double is
stored at the lowest address (A2=0). The X port should,
therefore, be connected to the even addresses and the
Y/Z port to the odd ones. Double-precision dloads and
dstores are then straightforward; the address is output
and, on the next cycle, the data is transferred least- and
most-significant halves together.

It is often necessary to load a single located at an even
address, or an integer at an odd address, to the FPU. In
these cases, transceivers that allow the data to cross over
from one half of the 64-bit word to the other must be
enabled. These cases may be detected by decoding the
XCNT field in the instruction word with the A2 address
bit. A pipeline register for the XCNT field should be pro-
vided to synchronize it to the address output. The result-
ing signals can then be used to control the transceiv-
ers,gate the WREN- lines and activate the OE-’s of the
data memory system before the data transfer occurs.

The crossover logic is also needed to allow integers to be
transferred between both even and odd addresses and
the integer processing unit. The decode logic must,
therefore, also sense integer loads and stores from the
OP bus of the IPU. Care must betaken to insure that all
loads and stores are properly qualified by the NEUT-,
STALL- and ABORT- signals discussed below.

Refer to the XL-8364 section of the Hardware Design-
er’s Guide for an example implementation.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

A.6. Modes

The 3x64 mode register must be initialized to the values
given in figure 209 when wused with the
XL-8164/X1L-8364 processor.

The remainder of the status register bits change accord-
ing to the state of the FPU and are used by the trap
handler to recover from exceptions. All of the status reg-
isters are saved along with the general purpose, x,y and t
registers during a context switch. Each selection is ex-
plained here:

1. Internal NEUT- cancels register writes when an ex-
ception is detected. This allows the system to re-
cover from multiple exceptions and allows the
XL-8164/XL-8364 to provide full support for the
IEEE standard even for pipelined operations.

2. Two-cycle multiplier latency is selected.

3. The load/store modes are set to match the XL-Se-
ries load/store model.

4. FPEX is delayed to the beginning of the cycle after
and exception occurs. Because the XL system may
“back-up” a cycle, this does not impact perform-
ance and eases design constraints.

5. Register file bypassing is enabled to minimize the

register-to-register latency.

Mode Bit Logic Value Description
SR0g 0 IEEE mode selected
SR04 0

Round to nearest mode selected

SRO2 0
SR04 1 Internal NEUT- on
SROg 1 FPEX active low and sticky
SRO, 0 Two-cycle multiplier latency
SR1g 0
SR1, 0 XL-8164 load/store modes
SR1, 1 Load mode = SP-D
SR13 1 Store mode = SP-DD
SR1,4 0
OR OR OR
SR1p 0
SR1, 1 XL-8364 load/store modes
SR1, 1 Load mode = SP-D/CB
SR1, 1 Store mode = SP-D/CB
SR1, 0
SR1g 1 FPEX delayed
SR1g 1 Register file bypass enabled

Figure 209. XL-8064 mode register

179

A.7. Conditions and Exceptions

The XL-8164/XL-8364 provide several signals which
transfer state information from the processing units
(IPU, FPU) to the sequencer (PSU). These are either
conditions, upon which the PSU may decide to branch;
or exceptions, which require software intervention to re-
cover gracefully.

The FPCN output on the 3x64 should be connected to
the FPCN input on the XL-8136. The FPCN signal may
be asserted according to the outcome of a compare in-
struction. The PSU may then execute a “branch on con-
dition” instruction to selectively transfer program con-
trol according to the outcome of the comparison. See
the body of this data sheet for details of the compare
instructions.

The FPEX output on the 3x64 should be connected the
EXT4- interrupt input on the XL-8136. When an en-
abled floating-point exception is detected, the FPU acti-
vates the internal NEUT- signal and sets the FPEX taken
bit in the status register. The FPEX output is activated at
the beginning of the following cycle, and is detected as
an interrupt on EXT4- by the PSU at the end of this
cycle. In addition, the FPEX pin on the FPU should be
OR’ed into the system ABORT- line for one cycle. The
internal NEUT- causes the current instruction to be held
in the code register; the trap handler can then read,
modify, and re-execute it before returning from the in-
terrupt. The ABORT- insures that the system begins re-
execution of the next sequential instruction after the re-
turn. The source code of an example IEEE trap handler
is available from WEITEK.

180

A.8 . NEUT-, STALL- and ABORT-

The XL-8164/X1-8364 components all use the NEUT-,
STALL- and ABORT- signals. These pins should be con-
nected directly between the three chips in the
XL-8164/XL-8364 processor (see figures 206 and 207).

NEUT- cancels the effect of the current instruction. The
signal is generated by the PSU. It is normally used in the
shadow of a delayed branch to prevent the instruction in
the pipeline from having any effect on the state of the
IPU and FPU.

STALL- cancels the effect of the next instruction. It
should be generated by the code memory subsystem to
indicate the delay or absence of the correct code word.
This prevents any invalid operation that may be present
on the code input at this time from affecting the state of
the processor. It allows wait states to be inserted in code
fetches, perhaps to allow for DRAM refresh or a code
cache miss.

ABORT- cancels the effect of both the current and the
next instructions. It should be generated by the data
memory subsystem to indicate the inability of the system
to instantly access the required data word. This allows
the cancelled instructions to be repeated when the ad-
dress becomes valid and for this retry to have the correct
effect. It allows the data memory to be “not ready” if,
for example, a page fault occurs.

Appendix B. 3x64 Programming Examples

B.1 . 3x64 Initialization

This example initializes a 3x64 to operate within an
XL-8164 system. In this configuration, the 3x64 is con-
nected to a single 32-bit data bus.

The first task during initialization is to set the I/O mode.
In the example that follows, lines 25-38 do this.
Lines 25-26 establish the desired setting of status regis-
ter .srl in bits 24-31 of register .r0. Lines 27-28 move
this constant to memory in anticipation of loading it into
the 3x64.

The actual movement of the constant to .sr1 is done by
the loop on lines 31-38. This loop is executed three
times. It is thought that the first trip through the loop

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

may fail to accomplish the initialization due to code
cache misses, and the second trip may fail due to data
refresh. The third trip insures that the I/O mode is prop-
erly set.

Once the I/0O mode is properly established, lines 44-49
completes the initialization of status register .sr0. Fol-
lowing this, lines 54-66 clear the remaining status regis-
ters, .sr2-.sri1f.

If the instances of constant Ox8c000000 appearing on
lines 25 and 26 were to be replaced with 0x6e000000,
then the proper initialization for an XL-8364 system
would be performed. This is the configuration with a
64-bit data bus.

1 /***
2 * reset — initializes WTL3164 in an XL-8164 system to operate in standard =
3 x XL-series mode. *
4 * *
5 * input: *
6 * .r31 = .sp = stack pointer *
7 * *
8 * output: *
9 * .sr0-.srll properly initialized *
10 ***/
11
12 .text
13 .globl reset
14
15 reset:
16
17 /**
18 * First set the load and store modes. This is done in a loop 3 times since *
19 * the first trip through the loop may be aborted due to code cache misses, *
20 * the second may be aborted due to memory refresh, and the third trip may *
21 * therefore be required. 1/0 mode is single pump, 32-bit bus, delayed load, *
22 x* and delayed data store. Also, FPEX is delayed and register file bypassing *
23 * is enabled. *
24 **/
25 movi 0x6c000000, .10
26 movih 0x6¢000000>>16, .10
27 +addr .sp,-1,.word
28 store .r0
29 movi 3,.rl
30
31 addrd .sp,0; loop
32 addrd .sp,0; fldsr .sri
33 addrd .sp,0; fldsr .sri1
34 addrd .sp,0; fldsr .sri1
35 addrd .sp,0; fldsr .sri
36 fldsr .sri1
317 subi .rl1,1,.r1; endloop .gtz
38 addrd .sp,0; revneut

181

B.1. 3x64 Initialization, continued

39
40

41 * Next set .sr0 - 2-cycle mode, FPEX sticky,
42 * nearest, and FAST modes.

43

44 movi 0x49000000, .r0

45 movih 0x49000000>>186,.r0

46 addrd .sp,0

47 store .ro

48 addrd .sp,0

49 fldsr .sro
50

51

52 * Clear the remaining status registers
53

54 addrd .sp,0

55 clr .r0; store

58 addrd .sp,0

57 addrd .sp,0; fldsr .sr2

58 addrd .sp,0; fldsr .srs3

59 addrd .sp,0; fldsr .sr4

60 addrd .sp,0; fldsr .srs

61 addrd .sp,0; fldsr .sré

62 addrd .sp,0; fldsr .sr7

63 addrd .sp,0; fldsr .srs

64 addrd .sp,0; fldsr .sr9

65 addrd .sp,0; fldsr .srl0

66 fldsr .sril1l

67

68 addi 4,.sp,.sp; rts

B.2 . Saving the State of the 3x64

This second example shows how the internal state of the
3x64 can be saved when context must be switched. This
routine is written for an XL-8164 system, in which the
3x64 is connected to a single 32-bit data bus. As written,
this code depends on register file bypassing being en-
abled. To execute with bypassing disabled would require
adjusting the program to account for an additional cycle
of latency for certain instructions.

Referring to the code listing that follows, the first section
of the routine, lines 16-109, defines the layout of the
90-word save area that stores the context information.
The layout is defined by means of .set assembly direc-
tives. These directives allow a symbol (that immediately
follows the directive name) to be assigned the value of
the expression that follows. Using these directives, the
layout is specified in terms of symbolic names given to
relative offsets for each element of the context. These
symbolic offsets are then used in the routine to address
the save area relative to the pointer passed to the routine
in register .r0. (Register .r0 is referred to by the sym-
bolic name sap following the definition on line 114.)

The first six words of the save area receive the code reg-
ister, as shown by lines 16-21. Each byte of the code

/2 03Kk o ok KOk K K Ok ok ok kK o K K Kk kK 3k 3k ok ok ok ok ok ok ok ok ok 3k ok 3 3k 3 ok ok ok ok ok ok ok K o K 3k 3k 3k sk ok ok ok ok ok 3k ok ok ok 3k 3k 5k ok 3K 3 3 oK K 3K ok o K K K K

round to *
*

internal neut on,

**/

/% %k ok e ook ok ok ok sk ok sk koK ok ok Ok K 3k K 3Kk 3k ok ok kol ok oK ok o ok ok ok ok ok o ok ok ok ok K kK KK ok K ok ok K oK kK K K K K o K R K R K R X

*

t*/

register is stored in bits 24-31 of a memory word, for
this is the format in which the register in transferred to
and from the 3x64. Similarly, the next twelve words re-
ceive the twelve bytes of the status register
(lines 23-34). The contents of the 3x64’s register file
are stored in the next 64 words (lines 36-99), which are
followed by eight words to save the .x, .y, and .t registers
(lines 101-109).

The instruction sequence required to save the code reg-
ister appears on lines 125-136. The XL-Series memory
model allows a store operation to occur every other cy-
cle; hence, the sequence shown alternates address gen-
eration instructions with code register stores. This pat-
tern is also continued through lines 139-165 which
store the status register in a similar manner.

Lines 167-297 save the 3x64’s register file. Due to the
32-bit data bus, the registers must be stored by 32-bit
halves. The code sequence shows each register being
saved as least-significant half (dstorel) followed by
most-significant half (dstorem). The same is true for
saving the .x and .y registers (lines 299-310) following a
move of their contents to the register file. In an
XL-8364 system with a 64-bit data bus, a single address
generation and double-precision store (dstore) would
be used for each register.

182

B.2. Saving the State of the 3x64, continued

Saving the .t registers completes the context save func-
tion. This is the only part of the function that is not en-
tirely straightforward. Within the routine, lines 319-325
first store a double-precision floating-point value of zero
on the stack and then load this into the .x register on the
3x64. At the same time, lines 319 and 321 create a
value of -0 (negative zero) in register .f2. Line 326 then
adds the -0 to the contents of register .t0 and puts the
result in register .f1. In most circumstances, this add op-
eration transfers the contents of .t0 to the register file.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

However, if round to negative infinity mode is set and
.t0 contains a value of zero, a value of -0 is stored in the
register file. Also, NaNs and denorms will be affected.
(Users concerned with full IEEE conformance should
consult their design consultants for information on how
this can be achieved.) Once the value in the .t0 register
has been moved to the register file, it is saved in the
normal manner (lines 327-330). This process is also re-
peated for the .t1 register (lines 330-334).

1 /***
2 * save_3164 — saves the state of the 3164.

3 *) *
4 * input: *
5 * .r0 = address of save area *
6 * .sp = stack pointer (2 words used) *
¥i * *
8 * output: *
9 * A copy of all registers is placed in the save area. *
10 ***/
11
12

1.3/ koo ok ok ok ok ok ok ok ok ok ok ok oK ok Skl kK K 3k o 3 ok 30K 3 K 3K 3K 3K K 3K K K 3k K ok 3Ok ok 3K ok sk ok ok kK K ik 3k ok ok ki ok 3ok K0k 30k Kk Ok dok Ok

14 * layout of the save area (90 words)

*

15 2k ok o o ok b ok ok ok ok KK K Ok ok K Kk ok ROk K ok R Kok ok ok sk ok ok Kok ok ok ko ok ook ko ok ok ok ok ok ok ok Ok ok ok ok ko ok ok K kK ok ok oK ROk R ROk R KK/

18 .set ¢cro,0 /* bytes of code word stored in bits 24-31 of word */
17 .set crl,cro+4

18 .set cr2,crl+4

19 .set cr3,cr2+4

20 .set cr4,cr3+4

21 .set cr5,cr4+4

22

23 .set sr0,cr5+4 /* bytes of status register stored in bits 24-31 */
24 .set srl,sroO+4

25 .set sr2,sri+4

34 .set srll,sri0+4

35

36 .set fO_1,sr1l+4 /* register file as least and most significant words */

317 .set fO_m,fo_1+4
38 .set f1_1,fo_m+4
39 .set f1 m,f1 _1+4

98 .set £31_1,f30_m+4
99 .set f31_m,f31_1+4
100
101 .set fx_1,f31 m+4 /* x register as least and most significant words */
102 .set fx_m,fx_l+4
103 .set fy_1,fx_m+4 /* y register as least and most significant words */
104 .set fy m,fy 1+4
105
106 .set fto_1l,fy m+4 /* t registers as least and most significant words */

107 .set fto_m,ft0o_l+4
108 .set fti_1,fto_m+4
109 .set ft1_m,fti_1+4

183

B.2. Saving the State of the 3x64, continued

110

111 /***
112 * 8137 register map *
113 ***/
114 .reg .r0 sap /* save area pointer */

115 .reg .rl rx /* scratch */

1186

117

118

119 .text

120 .globl save_3164

121 /% sk ok ook ook ok ok 3k ok ok ok 3K oK oK 3K ok 3k ok ok 3K K KOk K K K K 3K ok K ok ok ok ok ok K ok ok K ok ok sk ok ok 3k sk ok ok ok ok 3k ok sk ok ok ok ok 3K 3K ok ok ok ok 3k ok ok ok ok ok ok ok ok ok Xk
122 * Save the code register first *
123 ***/
124 save_3164:

125 addrd sap,cro

126 fstcr .cro

127 addrd sap,crl

128 fstcr .cri

129 addrd sap,cr2

130 fster .cr2

131 addrd sap,cr3

132 fster .cr3

133 addrd sap,cr4

134 fster .cr4

135 addrd sap,cr5

136 fstcr .crb

137

138

139 /***
140 * Save the status register *

141 ***/
142 addrd sap,sro

143 fstsr .sro
144 addrd sap,sril
145 fstsr .sril

164 addrd sap,srii

165 fstsr .sri1

1686

167 /***
168 * Save the register file *

189 ***/
170 addrd sap,fo_1

171 dstorel .fo
172 addrd sap,fo_m
173 dstorem . f0
174 addrd sap,f1_1
175 dstorel .f1
1786 addrd sap,fl_m
177 dstorem .f1

294 addrd sap,f31_1

295 dstorel .f31
296 addrd sap,f31_m
297 dstorem .f31

184

B.2. Saving the State of the 3x64, continued

298
299
300
301
302
303
304
3056
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

/33K ok ok ok sk ok ke K ok kK ok Sk kK 3k K ok k3 3k Kk ok ok ok ko ok skok 3k ok ok ok ok ok sk ok 3k sk k ke ok K ok K K R KOk ok K ok kK K Ok 30K ko 3k kK ok K ok K K

* Save the x and y registers
**********************tt*******************#*********************************/

addrd

addrd

addrd

addrd

sap, fx_1;

dstorel
sap, fx_m

dstorem
sap,fy_1

dstorel
sap,fy_m

dstorem

mov .x,.f0
mov .y,.f1
R {)
.fo
.f1

.f1

*

/0K ok ok ok ok ok ok ok Kok ok kK kK ok kK ok ik 3k ok ok 3k ok ke 3k 3k okok sk ok ok sk ok ok ok K K ok 3k ok Kk ok ok ok 3k kK ok ok 3k k ok ok e ok ok ok K 3 3 ok % ok % ok ok ok ok ok K K

* Save the .t0 and .tl registers.
-0 to their contents.
register contents.
and the t register contains 0, a -0 results.
affected.

K o ok o Kk ok kK oK K ok ok ok 3K K K K sk K 3K Kk ok ok ok ok K ok ok ok sk ok ok ok 3k ok ok ok K 3k 3K ok ok 3k ok oKk 3 K ok ok 3 ok ok 3 3 ok ok 3K 3 ok ok kK 3k oK oK K ok KOk

* % ¥

+addr

clr rx;

+addr
store
addr

addr

addai
addrd
addrd
addrd

addrd

rts

.8p,-1, .word;
store
.sp,-1, .word;
rx

.sp,0, .word
.sp,1, .word;

8,.sp,.sp;

sap, fto_1

dstorel
sap, fto_m

dstorem
sap,ft1_1

dstorel
sap,ftl_m

dstorem

However,

The t registers are unloaded by adding

In most cases the t register + (-0) yields the

fclr .f2

dfneg .f2,.f2

dloadl .x
dloadm .x

dfpass .x,.f1,.t0;
L f1

.f1; dfpass .x,.f1,.t1;
.£3

.3

185

*
*
if round to negative infinity mode is set *
*
*
*

Denorms and Nans are also

/

.f2,.t0,.f1

dfadd .f2,.t1,.f3

B.3. 3-D Graphics Example

This example illustrates how the 3364 embedded in a
XL-8364 system (64-bit bus) can be used as the trans-
formation processing element in a 3-D graphics system.
As shown, the routine maps a 3-D polyline with coordi-
nates in double-precision floating-point representation
to screen-space coordinates in 32-bit integer format.
The routine does a full 4 X4 matrix transformation of
local coordinates to clip-space, performs homogeneous
clipping, does a perspective division, and finally com-
pletes the 2 X2 transformation to screen-space.

This routine is written to be executed in 2-cycle multiply
latency mode. It is IEEE-interruptible.

PERFORMANCE

The performance of the routine in various cases is pre-
sented in figure 210. As shown in this figure, the trivial
acceptance loop requires 31 cycles to process a 3-D
point. Trivial acceptance is said to occur when all points
in the polyline are contained within the viewbox.

Within the loop, the first 15 cycles are required to per-
form the 4 X4 transformation to clip-space and to begin
the computation of 1/we. The next six cycles are re-
quired to test if the transformed point lies in the view-
box, and the final ten cycles are required to perform the
perspective division and the 2X2 transformation to
screen-space. Additional details of these operations are
presented in the next section.

Trivial rejection of a polyline occurs when each of its
line segments lies on the outside of at least one plane
bounding the viewbox. As shown in figure , the trivial
rejection loop requires 29, 32, or 35 cycles. The first 16

cycles of this loop are required to access the point and
transform it to clip-space. This is followed by six cycles
of testing the point against the viewbox. For rejection to
occur, 1-3 of the tests will indicate that the point lies
outside a clipping plane. This event requires control to
pass out of the loop so a flag can be set before testing is
resumed — an action that adds three cycles to the execu-
tion path. Finally, two cycles of overhead are required
to complete the loop. Hence, 29, 32, or 35 cycles are
required depending on the number of clipping planes
that separate a point from the viewbox interior.

The single clip operation listed in figure 210 refers to
processing a two-point polyline whose first point lies
within the viewbox and whose second point lies outside a
single clipping plane. As shown in the figure, this proc-
essing requires 106-108 cycles to complete.

The example is a partial implementation of a polyline
transformation routine. It does not include the code to
process the other two cases requiring clipping: the case
where a segment’s fist endpoint is outside and its second
point is inside the viewbox, and the case where both
endpoints are outside the viewbox. These cases can be
handled by a generalization of the method shown in the
example.

THE EXAMPLE — PRELIMINARY MATERIAL

Referring to the code listing of the example, lines 1-33
contain some introductory comments. Following this on
lines 34-71, a set of assembler .reg directives assign
symbolic names to the 32 registers of the 3364. A similar
map for the registers used in the integer processing unit
appears on lines 73-85.

Operation

trivial acceptance

Cycles Required

9 + (29 or 32 or 35)n

(2 points) 71

(n points) 9+ 31n
trivial rejection

(2 points) 72

(n points)
single clip

(2 points, against single plane) 106-113
additional clip

(2 points, each additional plane) 14-15

Figure 210. Performance of the graphics routines

186

B.3. 3-D Graphics Example, continued

The entry point for the routine, polyline, appears on
line 93. This labels a block of three instructions that
perform initialization. Line 94 transfers the count of
points in the polygon from a register in the integer proc-
essor to the top of stack in the sequencer. Line 96 gen-
erates an address reference to the x-coordinate of the
first point of the polyline.

THE TRIVIAL ACCEPTANCE LOOP

The trivial acceptance loop follows on lines 98-155. For
the first point of a polyline, execution of this loop begins
on line 111. Reading from the left, this line shows first
the addr instruction that generates an address one dou-
ble word (.quad) beyond the location referenced by the
current input pointer, ip. The address generated is that
of the first point’s y-coordinate. Continuing with
line 111, the “dload .x" causes the .x register in the
3364 to be loaded with the double word referenced by
the preceding address instruction — in this case the x-
coordinate of the first point. The final instruction on
line 111 shows a “dfixr t,ys,” which for each execution
of the loop beyond the first converts the previous point’s
screen-space coordinate from double-precision floating-
point to integer representation. Thus it can be seen that
the loop has been ‘‘folded”’ so that each trip through it
performs initial calculations for a point and final calcula-
tions and storing of the previous point.

Line 112 begins with another addr instruction, this time
to generate the address to store the screen-space x-coor-
dinate for the previous point (op is the output pointer).
On this same line, the double-precision y-coordinate for
the current point is loaded into the .y register.

Line 112 also begins the dot product computation for
the w-coordinate of the current point’s image in clip
space by multiplying x Xa1,4. This is, of course, an ex-
ample of computing the sum-of-products. The multiply
instruction of line 112, “dfmul .x,a14,s,.t0,” sends its
result to both the register named ¢ and the temporary
register .10. If you examine the add instruction
(line 114) that will be executed two cycles later (dfadd
ad4,.t0,xc), you will see that the product of xXau,4 is
being added to a4,4 (or wXas,4 since all w’s are equal to
1) — the previous product is added via the .t0 register.
Line 116 computes the final product and lines 116 and
118 add two more products to complete the determina-
tion of we. In the same manner, lines 113, 115, 117,
and 119 simultaneously compute the x-coordinate of the
point. Line 120 can then begin the computation of

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

1.0/we. Lines 119, 121, 123, and 125 compute the dot
product for the y-coordinate, and lines 118, 122, 124,
and 126 do it for the z-coordinate.

While the transformation of the point is being accom-
plished, other operations are also happening in parallel.
Lines 112 and 113 perform the address generation and
storing of the x-value generated for the previous point.
Lines 116 and 117 do this for the previous point’s y-
value. The integer processor instructions on lines 113
and 117 establish a pointer in register .dp to the data
area beginning at symbolic label const. The multiply in-
struction on line 125 begins the transformation of the
clip-space x-value to screen-space by multiplying it by
the x scale factor. The multiply on line 126 computes
—-1Xwe, so that —we is available for the viewbox testing
that follows. Additional loading operations also take
place.

Testing to determine if the transformed point lies within
the viewbox is done on lines 133-138 (and 145). Each
compare instruction, such as the “dfcmp xc,wc,.gtz”
on line 133, is followed on the next line (cycle) with a
floating-point conditional branch instruction that acts on
the result of the comparison. If a point fails one of these
tests against the six planes of the viewbox, then control
exits from the loop and enters supplementary code to
clip or reject the current polyline segment.

The final portion of the loop, lines 145-152 along with
lines 109-111, completes the mapping of the point to
screen-space and the conversion to integer output for-
mat. Line 145 applies a scale factor to the y-value. The
multiplies on lines 149 and 150 accomplish the perspec-
tive division, and the adds on lines 151 and 152 trans-
late the clip-space origin to the screen-space origin. As
previously mentioned, the fix instructions on lines 109
and 111 do the final conversion to integer format.

Because the IEEE divide begun on line 120 requires
17 cycles to complete, three floating-point operations
remain available before the result of the division can be
used on line 149. These three cycles are consumed by
the adds shown on lines 146-148. The effect of these
operations is to copy the w-, x—, and y-coordinates of
the current point to a second set of registers. The z-coor-
dinate is transferred through memory during other spare
operations. If it is discovered on the next trip through
the loop that clipping is required, this second set of regis-
ters contains the previous point.

187

B.3. 3-D Graphics Example, continued

The output pointer is incremented by the output pointer
increment, the value in the opi register, on line 151. On
the first trip through the loop this increment will be zero.
This has the effect of discarding the garbage output that
was stored earlier in the loop. Line 152 initializes this
increment to eight for subsequent trips through the loop,
representing the eight bytes output for each point.

CLIPPING

As explained in the comments on lines 187-203 in the
example, clipping is done by evaluating a set of 22
determinants. When a coordinate is found to be outside
a clipping plane in the accept loop, a (short) branch is
made to one of the six two-line program segments on
lines 167-184. Each of these segments begins the com-
putation of the determinants and branches to a segment
of code that completes these computations. Each of the
two-line program segments also sets a flag in the codes-
for-point-2 register, cp2. This set of flags can be inter-
preted as the signs of the results of each of the clipping
plane tests.

Lines 204-218 represent the segment of code that com-
pletes clipping of a line at the x¢ = we plane. This seg-
ment first tests the value of the output pointer incre-
ment, opi. If this value is zero, then the it is the first
point of a polyline segment that has been discovered to
be outside the viewbox. In this case, control is trans-
ferred to the trivial rejection loop to complete testing of
the point and to begin the rejection process.

The remainder of this segment of the clipping code,
lines 206-215, does a straightforward evaluation of the
determinants. Additionally, -wc is computed to allow
further viewbox testing of the clipped point. The
lines 220-317 contain five additional code segments to
clip line segments at the other five bounding planes.

Each of the segments that perform clipping exit to an-
other segment that continues the viewbox testing of the
new point (lines 324-329). Testing continues and any
further clipping that is required is performed. When the
second endpoint is finally determined, the division
(1/wc) is initiated (line 329).

Control then passes to the code segment on
lines 359-380. This segment completes the mapping of
the second point of the clipped segment to screen-space

and outputs the results. Finally, control passes to the
trivial rejection loop to begin the rejection process.

TRIVIAL REJECTION

The first portion of the trivial rejection loop,
lines 393-408, is responsible for transforming input
points to clip-space. It differs is only minor aspects from
that described for the trivial acceptance loop.

As expected, the next portion of the loop performs the
viewbox testing (lines 415-421). If a test against a plane
of the viewbox fails, then control transfers to one of the
six two-line instruction segments on lines 435-446. This
two-line instruction segment merely sets the appropriate
flag in the codes-for-point-2 register, cp2, and returns to
the viewbox testing sequence.

OTHER CONSIDERATIONS

As written the polyline routine processes points whose
coordinates are represented as double-precision float-
ing-point values. What about handling single-precision
coordinate lists? By substituting fdmul for dfmul in each
of the chained instructions in the dot product calcula-
tions (lines 112-126 and 394-408) the routine will han-
dle single-precision input. The fdmul instructions will
multiply the single-precision coordinates by a double-
precision matrix element and yield double-precision re-
sults. The remainder of the calculations can be com-
pleted in double-precision. Of course, the dload’s used
to load the coordinate values must also be changed to
fload’s. Doing the transforms with a double-precision
matrix can facilitate the retention of precision when us-
ing concatenated transformations.

As stated earlier, doing all calculations in full double-
precision with double-precision input requires that the
3364 operate in two-cycle multiply latency mode. Oper-
ating on single-precision input data with fdmul instruc-
tions, however, would allow the routine to use a 3x64
operating in either two-cycle or three-cycle latency
mode. This is because it is only the full double-precision
multiply that requires three cycles in three-cycle mode —
the mixed mode multiplies require only two cycles. The
next example shows how slightly higher performance
can be realized when doing strictly single-precision cal-
culations.

188

B.3. 3-D Graphics Example, continued

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
81
52
53
54
55
56
57
58
59
60
61
62
63

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

/**ﬁ*************************i**********

* polyline -- generates a sequence of screen-space coordinates, (x,y),
given a list of local coordinates.

point and all arithmetic is done in 64-bit floating point format.

*

*
*
*
*
*
*
*
*
*
*
*
*
x*
*
*
*
*
*
*
*
*
*
*
*
*
*
3
*

input:

.r0 = count of points in polyline

.-rl = address of list of (x,y,2)’s (all w’s assumed = 1)
.r2 = address of area to receive list of screen-space (x,y)’s

Coordinates are 64-bit floating

.r3 = address of screen-space transformation

.f16-£f31

output:

.r2 = address+2 of last point in list of (x,y)’s
.f16-.f31 left undisturbed

subroutine calls:

outpl -- to output the polyline when a pen-up is required
performance:
trivial acceptance -- 9 + 31%n cycles for n points
trivial rejection -- 9 + (29]32|35)*n cycles for n points
single clip of 2 pt polyline -- 106-108 cycles
additional c¢lips -- 14-15 cycles per plane
note:

This is a partial implementation.
trivial acceptance loop, the trivial rejection loop, and the code to
clip a line segment with its first point inside and its second outside
the viewbox.

4x4 transformation from local coordinates to clip-space

This code segment includes the

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/

/***
* 3264 register map
***/

.reg
.reg
.reg
.reg

.reg
.reg
.reg
.reg
.reg
.Teg
.reg
.reg

.reg
.reg
.reg
.reg

.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg

. fo
.f1
.f2
.f3

.f4
.f5
.fe
Lf7
.f8
.f9
.f10
.f11

.f12
.f13
.f14
.f15

.f1e
.f17
.f18
.f19
.f20
.f21
.f22
.f23

we
xC
ye
zc

rwe
mwc, z2

zero,el
u,e2

XS

¥s

wl
x1
vyl
z1

all
ali2
al3d
al4
a2l
az22
a23
az24

/* clip-space coordinates */

/*
/*
/¥
/*
/*

/*
/%

/*

/*

1/we */
-we */
scratch */
scratch */
0.0 *x/

screen-space x */

screen-space y

last point */

*/

*

local coordinates to clip-space xform */

189

B.3. 3-D Graphics Example, continued

64
85
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
88
87
88
89
90
981
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg

.f24
.£25
.f26
.f27
.f28
.f29
.30
.f31

a3l
a32
a33
a34
a4l
a42
a43
a44

/***!***********************

* 8137 register map
3ok oK K 3 ok oK 3k 2k ok oK 3K 3 ok A K K ok ok ok ok oK ok ok ok K oK K K K Kk ok ok ok Ak ok K kK K K ok ok K ok ok ok ok 3k ok ok ok ok ok ok ok Kok ok ok koK R Ok ok ok Rk kK ROk /

/* count of points */

movi

.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg
.reg

.text

.T0
.rl
.Tr2
.T3
.r4
.rd
.Tr6
.r7
.r8
.r9

n
ip
op
tp
opi
dp
cp2
cpl
wait
X

.globl polyline
/***
* Initialization
a4 3 3 K K ok 3k ok 3K ok ok ok ok ok oK 3 oK 3K oK 3k 3k ok ok ok ok ok 3k ok ok ok 3k 3k 3k 3k ok ok 3k 3k 3k ok 3k ok ok 3k 3K ok 2k ok ok 3k 3k ok ok ok ok A ok ok 3k ok ok 3k 3K 3k 3k 3k ok ok Kk Kk K kK K/
polyline:
pushs n;

0,opi;

addr ip,0,.quad;

shbr acc1;

ovneut

/* input pointer */
/* output pointer */

/* screen-space transformation pointer */
/* output pointer increment */
/* data pointer */
/* codes for current point */
/* codes for preceding point */
/* wait counts in cycles */

/* scratch */

fclr t
fclr zero

*

*

/% ->x[0] */

/**

* ACCEPTANCE LOOP START *
* *
* Trivial acceptance loop start. Transform local coordinates (with w 1) *
* to clip-space coordinates: *
* XC = all*x + a2l*y + a3l*z + a4l *
* yC = al2*x + a22*y + a32%z + a42 *
* 2c = al3*x + a23*y + a33*z + a43 *
* wC = al4*x + a24*y + a34*%z + ad4 *
**/
accept:
+addr ip, 3, .quad; dfixr s,xs

accl:
addr ip,1,.quad; dload .x; dfixr t,ys
addr op,0,.word; dload .y; dfmul .x,al4,t,.t0; dfadd zero,.tO,u /* ald4*x */
movi con,dp; store xs; dfmul .x,all,s,.tl; dfadd zero,.tl,u /* all*x */
addr ip,2,.quad; dfmul .y,a24,t,.t0; dfadd a44,.t0,wc /* a24*y */
addr ip,1,.quad; dload .x; dfmul .y,a21,s,.tl; dfadd a41,.tl,xc /* a2l*y */
addr op,1,.word; dload .y; dfmul .x,a34,t,.t0; dfadd wc,.tO,wc /* a34%z */
movih con>>16,dp; store ys; dfmul .x,a31,s,.tl; dfadd xc,.tl,xc /* a3l*xz */
addr dp,O0, .quad; dfmul .y,a13,t,.t0; dfadd wc,.tO0,wc /* al3*x x/
addr ip,1,.quad; dload .x; dfmul .y,al2,s,.tl; dfadd xc,.tl,xc /* al2*x */
mov cp2,cpl; dload .y; dfdiv .x,wc,rwc /% 1/we */
addr ip,2,.quad; dfmul .y,a22,s,.tl; dfadd a24,.tl,yc /* a22*%y */
addr dp,2,.quad; dload .x; dfmul .y,a23,t,.t0; dfadd a43,.t0,zc /* a23*y */
addr tp,0,.quad; dload zero;dfmul .x,a32,s,.tl; dfadd yc,.tl,yc /* a32*z */
addr dp,1,.quad; dload .y; dfmul .x,a33,t,.t0; dfadd zc,.t0,zc /* a33*z */
addr dp,3, .quad; dload .x; dfmul .y,xc,s,.tl; dfadd yc,.tl,yc
addr tp,1,.quad; dload z1; dfmul .x,wc,mwc,.t0; dfadd zc,.t0,zc /* -1%wc */

190

B.3. 3-D Graphics Example, continued

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

127

128 /**#*****
129 * Test if the point is within the viewbox: *
130 * -WC <= XC <= +WC && -WC <= YyC <= +WC && O <= 2C <= +WC *
131 * The six signs are accumulated in cp2 to assist in trivial rejection. *
132 **#*********************/
133 movi O,cp2; dload .y; dfemp xc,wc,.gtz /* XC <= wc? */
134 dfcmp xc,mwc, .ltz; fbr .gtz,outxpl /* xXc >= ~wc? */
135 dfcmp yc,wc,.gtz; fbr .1ltz,outxnl /* yc <= wc? */
136 dfcmp yc,mwe, .ltz; fbr .gtz,outypl /* yc >= -wc? */
137 dfcmp zc,zero,.ltz; fbr .ltz,outynl /* zc >= 0?7 */
138 dfcmp zc,wc,.gtz; fbr .1ltz,outznl /* zc <= wc? */
139

140 /**
141 * Transform clip-space coordinates to screen-space: *
142 * xs = fix[(xc/we)*vsx + vex] *
143 % ys = fix[(yc/wc)*vsy + vey] *
144 **/
145 dfmul yc,.y,t; fbr .gtz,outzpl

146 addr dp, 3, .quad; dfadd wc,zero,wl

147 dstore zc; dfadd xc,zero,xl /* unload DSR */
148 addr tp,3,.quad; dfadd yc,zero,yl /* wait 1 cyc */
149 addr tp,3,.quad; dload .x; dfmul s,rwc,s

150 dload .y; dfmul t,rwc,t

151 adda op,opi,op; dfadd .x,s,s; shsob accept

152 movi 8,0pi; dfadd t,.y,t; ovneut /* update op */
153 /**
154 * ACCEPTANCE LOOP END *
155 **/
156 dfixr s,xs

157 addr+ op,1, .word; dfixr t,ys

158 store xs /* store last */
159 addr+ op,1,.word

160 store ys

161 rts

162

163

164 /**
165 * Dispatch to the appropriate clipping routine *
166 **/
167 outxpl:

168 dfsub wl,x1,el; br cxpl /* wl-x1 */
169 addilo cp2,0x20,cp2; dfsub wec,xc,e2; ovneut /* W2-X2 */
170 outxnl:

171 dfadd wl,x1,el; br cxnl /* Wl+xl */
172 addilo cp2,0x10,cp2; dfadd wec,xc,e2; ovneut /* W2+X2 */
173 outypl:

174 dfsub wl,yl,el; br cypl /* wl-yl */
175 addilo cp2,0x08,cp2; dfsub wc,yc,e2; ovneut /¥ w2-y2 */
176 outynl:

177 dfadd wl,yl,el; br cynl /* wl+yl */
178 addilo cp2,0x04,cp2; dfadd wc,yc,e2; ovneut /¥ w2+y2 x/
179 outznl:

180 dfmov zl,el; br czni /* z1 */

181 addil0 cp2,0x02,cp2; dfmov zc,e2; ovneut /* 22 */

182 outzpl:

183 dfsub wl,zl,el; br czpl /% wl-zl1 */
184 addilo cp2,0x01,cp2; dfsub wc,zc,e2; ovneut /* w2-22 */

191

B.3. 3-D Graphics Example, continued

185
186
187
188
189
190
191
192
193
194
195
1986
197
198
199
200
201
202
203
204
205
2086
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

/KK oK ok o kK KK ok 3k ok ok ok ok K 3k K ok ok ok ok ok K ks 3 ok K K K K ok 3k 3k ok ok ok ok ok ok ok ok ok ok ok K K Kk ok Kok ok ok ok ok o o s sk ok okok ok ok ook ok ok ok koK R ok

* Clip exiting segment at xc =

wc plane. At the intersection, *
* *
* x = x1 + t*(xc-x1) where t = (wl-x1)/((wl-x1) - (wc-xc)). *
* *
* This simplifies to *
* *
* | x1 (wi-x1) | | x1 el | *
* | x¢ (we-xec) | | xc e2 | *
* X = ————— or X = ——-— *
* (wec-xc) - (wl-x1) e2 ~ el *
* *
* Similar expressions can be derived for y, z, and w. Since division by the *
* scale factor represented by the denominator in the expressions will be *
* accomplished in the normal perspective division, the coordinates can be *
* computed by determinants equal to or similar to the numerator above. *
**/
cxpl:
subai opi,0,opi; dfmul wec,el,s; br .eqz,cxp2 /* w2*el *x/
dfmul wl,e2,t /* wlxe2 */
dfmul yc,el,yc /* y2*el */
addr dp,1, .quad; dfsub s,t,wc /* new w2 x/
addr dp,0,.quad; dload mwc; dfmul yi,e2,s /* yl*e2 */
dload rwc; dfmul wc,mwc,mwc /* —~wC */
dfsub yc,s,yc /¥ new y2 */
addr dp,2,.quad; dfmul zc,el,s /% z2%el */
dload zero;dfmul z1,e2,t /% zl*e2 */
dfmov wc,xc; br typil /* new x2 */
dfsub s,t,zc; ovneut /* new z2 */
cxp2: br typ2 /* 1st pt */
movi Ox3F,cpl; ovneut

/3K ok ok ok ok 3k K kK Kk K ok ke ke kK Sk K K K K K K K K K XK K K K K K K K K K K Ok K K ok K 3k K ko sk sk ok Ok kK K K Sk Kk K K K K K K K K K K K

* Clip exiting segment at xc =

-wc plane

*

**/
cxnil:
subai opi,0,opi;

CcX

addr
addr

addr

n2:
movi

dp,1, .quad;
dp, 0, .quad;
dp, 2, .quad;
Ox3F,cpl;

dfmul
dfmul
dfmul
dfsub
dload mwc; dfmul
dload rwc; dfmul
dfsub
dfmul
dload zero;dfmul
dfcmp
dfneg
dfsub

wc,el,s; br .eqz,

wl,e2,t

yc,el,yc

s,t,we

yl,e2,s

wC, MwWC, mwC

yc,s,yc

zc,el,s

z2l,e2,t

zero, zero, .uord

WwC, XC br typi

s,t,zc; ovneut
br tyn2
ovneut

192

cxn2 /*
/*
/¥
/*
/*
/*
/¥
/*
/*
/*
/*
/*

/*

w2*el */
wlke2 %/
y2xel */
new w2 */
ylxe2 */
-wC */
new y2 */
22*el */
z1*e2 */
clr cc */
new x2 */
new z2 %/
1st

pt */

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
B.3. 3-D Graphics Example, continued

239
240 /**************************t*tt**
241 * Clip exiting segment at yc = wc plane *

242 RkokookkokR Kok R kK KK OK KRk oK KR R KK K KK KK R K K o K R oK KK oK K 3k kKK kK KK K KK KK KK KR KR K KRR KRR K/
243 cypl:

244 subai opi,0,opi; dfmul wc,el,s; br .eqz,cyp2 /% w2*el %/
245 dfmul wl,e2,t /% wl*e2 %/
246 dfmul xc,el,xc /* X2%el */
247 addr dp,0,.quad; dfsub s,t,wc /* new w2 */
248 addr dp,1,.quad; dload mwc; dfmul x1,e2,s /% X1%*e2 */
249 dload rwc; dfmul wc,mwc,mwc /¥ —-wC */
250 dfsub xc,s,xc /* new x2 */
251 addr dp,2,.quad; dfmul zc,el,s /* z2%el */
252 dload zero;dfmul z1,e2,t /* zl*e2 */
253 dfmov wc,yc; br tznl /* new y2 x/
254 dfsub s,t,zc; ovneut /* new z2 */
255

256 cyp2: br tzn2 /¥ 1st pt */
257 movi Ox3F,cpl; ovneut

258

259 /**
260 * Clip exiting segment at yc = -wc plane *

261 3 3 3 KK K K K K K K K K K Ok Kk K K R K K K K K 3Kk ok Kk 3K ok kK K ok K K 3K K 3K K K ok 3 K K K R OK sk R K Sk K Ok K K ok ok KK Ok Kok K ok X ok ok /
262 cynl:

263 subai opi,0,opi; dfmul wc,el,s; br .eqz,cyn2 /* w2*el */
264 dfmul wl,e2,t /* wl*e2 */
265 dfmul xc,el,xc /* x2%el */
266 addr dp,1,.quad; dfsub s,t,wc /* new w2 */
267 addr dp,0,.quad; dload mwc; dfmul x1,e2,s /¥ X1l*e2 */
268 dload mwc; dfmul wc,mwc,mwc /* —wC */
269 dfsub xc,s,xc /* new X2 */
270 addr dp,2,.quad; dfmul zc,el,s /* 22%el */
271 dload zero;dfmul zl,e2,t /% zl*e2 */
272 dfcmp zero, zero, .uord /¥% ¢clr cc */
273 dfneg wc,yc; br tzni /¥ new y2 */
274 dfsub s,t,zc; ovneut /% new z2 */
275

276 cyn2: br tzp2 /* 1st pt */
277 movi Ox3F,cpl; ovneut

278

279 /**
280 * Clip exiting segment at zc = wc plane *
281 *******************t**/
282 czpl:

283 subai opi,0,opi; dfmul wc,el,s; br .eqz,czp2 /% w2*el */
284 dfmul wl,e2,t /* wlxez */
285 dfmul xc,el,xc /% X2%el */
286 addr dp,1, .quad; dfsub s,t,wc /* new w2 %/
287 addr dp,0,.quad; dload mwc; dfmul x1,e2,s /* X1*e2 */
288 dload rwc; dfmul wc,mwc,mwc /* —we */
289 dfsub xc,s,xc /* new x2 %/
290 addr dp,2,.quad; dfmul yc,el,s /* y2*xel */
291 dload zero;dfmul yl,e2,t /¥ yl*e2 */
292 dfcmp zero,zero, .uord /* clr cc */
293 dfmov wc,zc; br ssla /*¥ new z2 %/
294 dfsub s,t,yc; ovneut /* new y2 %/
295

296 czp2: br ss2r /* 1st pt */
297 movi Ox3F,cpl; ovneut

193

B.3. 3-D Graphics Example, continued

298
299 /% % ok ok ok ko kK kKKK K K K ok ok K K 3 K K K K 3K oK 3k 3K ok K K K ok Ok K K K K % K K K K K K 3k %K K K K kK K Kk Kk K K K Ok K K K K K R R K
300 * Clip exiting segment at zc = O plane *

301 Ak o o K K K KK KK KK KK K K K KK K K K K K K K K 3 K o R K oK ok ok K K K K K K KK KOK Kk K OK Kk OK K K Kk K k k k f
302 cznl:

303 subai opi,0,o0pi; dfmul wc,el,s; br .eqz,czn2 /* w2*el */
304 dfmul wl,e2,t /* wl*el %/
305 dfmul xc,el,xc /% X2%el */
308 addr dp,1,.quad; dfsub s,t,wc /% new w2 %/
307 addr dp,0,.quad; dload mwc; dfmul x1,e2,s /* X1*e2 */
308 dload rwc; dfmul wc,mwec,mwc /* —we */
309 dfsub xc,s,xc /* new x2 */
310 addr dp,2,.quad; dfmul yc,el,s /* y2%xel */
311 dload zero;dfmul yl,e2,t /* yl*e2 */
312 fclr zc; br ssia /* new z2 */
313 dfsub s,t,yc; ovneut /* new yc */
314

315 czn2: br ssilr /% 1st pt */
316 movi Ox3F,cpl; ovneut

317

318

319 /**
320 * Test if the clipped point is within the viewbox: *
321 * -WC <= XC <= +WC && -wWC <= yC <= +wC && O <= zC <= +WwC *
322 * The six signs are accumulated in cp2 to assist in trivial rejection. *
323 **/
324 typ1l: dfcmp yc,wc,.gtz; fbr .1ltz,outxn3 /* yc <= wc? */
325 tynl: dfcmp yc,mwe, .ltz; fbr .gtz,outyp3 /* yc >= -wc? */
326 tznl: dfcmp zc,zero,.ltz; fbr .ltz,outyn3 /* 2¢ >= 0?7 */
327 tzpl: dfcmp zc,wc,.gtz; fbr .ltz,outzn3 /* zc <= wc? */
328 ssla: fbr .gtz,outzp3

329 ss2a: dfdiv rwc,wc,rwc; br ss3a /* 1/wc */

330

331 /**
332 * Dispatch to the appropriate clipping routine *

333 **/
334 outxp3:

335 dfsub wl,x1,el; br cxpl /% wl-x1 %/
336 addil0 cp2,0x20,cp2; dfsub wc,xc,e2; ovneut /% W2-X2 */
337 outxn3:

338 dfadd wi,xl,el; br cxnl /* wlaxl */
338 addilo cp2,0x10,cp2; dfadd wc,xc,e2; ovneut /¥ W2+X2 */
340 outyp3:

341 dfsub wl,yl,el; br cypl /* wl-yl1 */
342 addilo cp2,0x08,cp2; dfsub wc,yc,e2; ovneut /* w2-y2 */
343 outyn3:

344 dfadd wl,yl,el; br cynl /% wlsyl */
345 addil0 cp2,0x04,cp2; dfadd wc,yc,e2; ovneut /* W24y2 */
346 outzn3:

347 dfmov zl,el; br cznl /* 21 */
348 addilo cp2,0x02,cp2; dfmov zc,e2; ovneut /* 22 */
349 outzp3:

350 dfsub wl,zl,el; br czpil /% wl-z1 */
351 addil0 cp2,0x01,cp2; dfsub wc,zc,e2; ovneut /% w2-22 */
352

194

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
B.3. 3-D Graphics Example, continued

353

354 /**
355 * Transform clip-space coordinates to screen-space: *
356 * xs = fix[(xc/we)*vsx + vex] *
357 * ys = fix[(yc/wc)*vsy + vcy] *

358 *i***#****/
359 ss3a:

360 addr tp,0,.quad

361 addr tp,1,.quad; dload .x

362 dload .y; dfmul .x,xc,s

363 movi 8,wait; dfmul yc,.y,t

364 ss4a: addi -2,wait,wait; br .gtz,ssda /* wait for / */
365 dfadd wc,zero,wl

366 dfadd xc,zero,x1

367 addr tp,2,.quad; dfadd yc,zero,yl

368 addr tp,3,.quad; dload .x; dfadd zc,zero,zl
369 addr op,0,.word; dload .y; dfmul s,rwc,s

370 store xs; dfmul t,rwc,t

371 addr op,1, .word; dfadd .x,s,s

372 adda op,opi,op; store ys; dfadd t,.y,t /* update op */
373 movi 8,0pi; dfixr s,xs

374 +addr ip,3,.quad; dfixr t,ys /% —>x[i+1] */
375 addr+ op,1, .word

376 store xs /* output pt */
377 addr+ op,1, .word

378 movi O,opi; store ys /* pipe empty */
379 bsr outpl /* put pline */
380 br ss3r /* go reject */
381

382

383

384 /**
385 x REJECTTION LOOP START *
386 *
387 * First transform local coordinates (with w = 1) to clip-space coordinates: *
388 XC = all*x + a2l*y + a3l*z + a4l *
389 x yC = al2*x + a22*y + a32%z + a42 *
390 * zC = 8al3*x + a23*y + a33*z + a43 *
391 * wC = ald*x + a24*y + a34*z + a44 *
392 **/
393 reject: mov cp2,cpl;dload .x; dfmov yc,yl

394 addr ip,1,.quad; dfmul .x,al4,t,.t0; dfadd zero,.tO,u /* ald*x */
395 dload .y:; dfmul .x,all,s,.tl; dfadd zero,.tl,u /* all*x */
396 addr ip,2,.quad; dfmul .y,a24,t,.t0; dfadd ad4,.t0,wc /* a24*y */
397 movi.con,dp; dload .x; dfmul .y,a21,s,.t1; dfadd a41,.t1l,xc /* a2l*y */
398 addr ip,0,.quad; dfmul .x,a34,t,.t0; dfadd wec,.tO,wc /* a3d4*xz %/
399 movih con>>16,dp; dload .y; dfmul .x,a31,s,.tl; dfadd xc,.tl,xc /* a3l*z */
400 addr dp,0, .quad; dfmul .y,al3,t,.t0; dfadd we,.tO,wc /* al3xx */
401 addr ip,1,.quad; dload .x; dfmul .y,al2,s,.tl; dfadd xc,.ti,xc /* al2*x */
402 dload .y; dfdiv .x,wc,rwc /% 1/WC */
403 addr ip,2,.quad; dfmul .y,a22,s,.tl; dfadd a24,.tl1,yc /* a22*%y */

404 addr dp,2,.quad; dload .x; dfmul .y,a23,t,.t0; dfadd a43,.t0,z2 /* a23*xy */
405 addr dp,0,.quad; dload zero;dfmul .x,a32,s,.tl; dfadd yc,.tl,yc /* a32%z x/
408 addr dp,1,.quad; dload .y; dfmul .x,a33,t,.t0; dfadd z2,.t0,z22 /* a33*z */
407 addr tp,1,.quad; dload .x; dfmul .y,zc,zl,.tl; dfadd yc,.t1,yc

408 addr tp,0,.quad; dload .y; dfmul .x,wc,mwc,.t0; dfadd z2,.t0,zc /* -1*wc */

195

B.3. 3-D Graphics Example, continued

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
4317
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

/3% Kk ok ok ke ok ek ok oK ok 3 K 3K 3k ok ok Kk 3O ok ok ok ok ook oKk ok o ok o ok o ok oK ok ok ok ok Ok ok kK Sk ok ok K K S ok K K K K K K K K KK K ok K K K K K

* Test if the point is within the viewbox and exit the loop if it is: *
* -WC <= XC <= +WC && -WC <= yC <= +wC && O <= zC <= +WC *
* The six condition codes are accumulated in c¢p2 to assist in rejection. *
**/
movi O,cp2; dload .x; dfcmp xc,wc,.gtz /¥ XC <= wc? */
dfcmp xc,mwc, .ltz; fbr .gtz,outxp2 /* xc >= -~-wc? */
typ2: dfcmp yc,wc,.gtz; fbr .1ltz,outxn2 /* yc <= we? */
tyn2: dfcmp yc,mwc,.ltz; fbr .gtz,outyp2 /* yc >= -wc? */
tzn2: dfcmp zc,zero,.ltz; fbr .ltz,outyn2 /* zc >= 0? */
tzp2: dfcmp zc,we, .gtz; fbr .1ltz,outzn2 /* zc <= wc? */
sslr: dfmul .x,xc,s; fbr .gtz,outzp2
ss2r: and cpl,cp2,rx; dfmul yc,.y,.t; br .eqz,outin /* reject? x/
ss3r: dfmov wc,wl; shsob reject /* loop end */
+addr ip,3,.quad; dfmov xc,x1; ovneut /¥ =>x[i+1] */
rts
/**
* REJECTTION LOOCP END x
**/

/3 Kk ok K ok ok ok oK K ok ok ok K K K 3K K ok K K Kk ok ok 3k ok ak 3k ok sk sk ok ok ok ok ok K ok ok ok ok ok sk ok sk ok ok kK KOk 3K K K K ok ok ok K K ok oK K K o ok ok ok ok K

x Each of the following pairs of instructions sets the appropriate bit in *
* the code for the point and returns immediately to the testing sequence. *
**/
outxp2: br typ2
addilo cp2,0x20,cp2; ovneut
outxn2: br tyn2
addilo c¢p2,0x10,cp2; ovneut
outyp2: br tzn2
addilo cp2,0x08,cp2; ovneut
outyn2: br tzp2
addilo cp2,0x04,cp2; ovneut
outzn2: br ssir
addil0 cp2,0x02,cp2; ovneut
outzp2: br ss2r
addil0 c¢p2,0x01,cp2; ovneut
/**

* The current segment does not lie on the outside of a single clipping plane *

* (clp2 & clpl == 0). Hence the segment must be clipped. *

**/
outin:

.data
/**
* data area *
**/
con: .dfloat 1.0
.dfloat -1.0
.dfloat 0.0
zx: .dfloat 0.0

196

B.4. Single-Precision 3-D Graphics

This example is a slight variation of the previous exam-
ple given for double-precision 3-D graphics. Only the
trivial acceptance loop is presented. All operations have
been translated to single-precision. The performance of
this loop is shown in figure 211.

The performance improvement from 31 cycles to 29 cy-
cles per point results from the reduced latency of a sin-
gle-precision divide over a double-precision divide (11
cycles versus 17 cycles). This does, however, necessitate
saving the previous point in memory instead of the regis-
ter file of the 3x64. This causes additional overhead for
initialization and for retrieving the previous point when a
segment must be clipped. Also, this version of the loop
expects the 2X 2 screen-space transformation to be pre-
sent in the 3x64’s register file.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

Unlike the previous example, this routine is not IEEE-
interruptible. The only violation of IEEE-interruptibility
rules occurs on line 107. This line loads into the .y regis-
ter and also uses this register as a source operand during
the same cycle.

Operation Cycles Required
trivial acceptance

(2 points) 71

(n points) 13 + 29n

197

Figure 211. Single-precision graphics performance

B.4. Single-Precision 3-D Graphics, continued

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

/K ke ok ok ok ok ok ok ok K K ok K k ok Xk sk sk ok ok ok ok ok ok ok ok K ok ok sk ok i sk ok sk ok ok ok ok ok ok ok ok ok ok ok sk sk R ok 3k ok K ok 3 3K 3K ok 3k 3k ok ok ok ok ok ok ok ok ok ok ok

*

* polyline -- generates a sequence of screen-space coordinates, (x,y),
given a list of local coordinates. Coordinates are 32-bit floating
point and all arithmetic is done in 32-bit floating-point format.

input:
.r0 = count of points in polyline
.rl = address of list of (x,y,z)’s (all w’s assumed = 1)
.r2 = address of area to receive list of screen-space (x,y)’s
.f12-.f15 = 2x2 transformation from clip-space to screen-space
.f16-.f31 = 4x4 transformation from local coordinates to clip-space
output:
.r2 = address+2 of last point in list of (x,y)’s
.f12-.£31 left undisturbed
performance:
trivial acceptance -- 13 + 29*n cycles for n points
note:

¥R R R X R X OF K O K K X X R X X X *

This is the trivial acceptance loop only.

3 3 oK oK ok ok ok ok ok ok ok kK kK K K K K K R KOk K 3k Kk K ok ok ok ok K ok kK Kok Kok ok k koK ok ke sk ok K ok Kk kK ok K K K K K KK R K K K K K K K KK

x
*
*
*
*
*
*
*
*
*
3
*
*
*
*
*
*
*
*
*
*

/

/3 %Kk K KK Ok K K K ok ok ok ok K ok Ok Kok K ok ok 3k K 3k K 3K K 3K Ok K K ok kK sk 3k ok 3k ok ok 3k oKk 3 ok Ok ok 3k ok sk ok ok ok sk sk ok ok ok ok ok ok ok ok kK ok ok K

* 3264 register map
***/

.reg . fo weC /* clip-space coordinates */
.reg Lf1 XC

.reg .f2 yc¢

.reg .3 zc

.reg .fa rwe /* 1/wc */

.reg .f5 mwc, z2 /* -wc */

.reg .f8 s /* scratch */

.reg . f7 t /* scratch */

.reg .f8 zero /* 0.0 */

.reg .f10 XS /* screen-space x */
.reg .f11 ys /* screen-space y */
.reg .fi12 VSX /* clip-space to screen-space xform */
.reg .f13 vsy

.reg .f14 veX

.reg .f15 vey

.reg .f16 all /* local coordinates to clip-space xform */
.reg .f17 al2

.reg .f18 al3

.reg .f19 al4

.reg .f20 a2l

.reg .f21 a22

.reg .f22 a23

.reg .f23 a24

.reg .f24 a3l

.reg .fas a32

.reg .£26 a33

.reg .f27 a34

.reg .f28 a4l

.reg .f29 a42

.reg .f30 a43

.reg .f31 ad4

198

*

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

B.4. Single-Precision 3-D Graphics, continued

61

82 /***
63 * 8137 register map *
64 ***/
65 .reg .T0 n /* count of points */

66 .reg .rl ip /* input pointer */

87 .reg .r2 op /* output pointer */

68 .reg .r3 opi /* output pointer increment */

69 .reg .r4 dp /* data pointer */

70 .reg .r5 cp2 /* codes for current point */

71 .reg .r6 cpl /* codes for preceding point */

72 .reg .r7 rx /* scratch */

73 .reg .r8 1p /* last point pointer */

74 .reg .T9 1i /* last point pointer increment */

75

76

77 .text

78 .globl polyline

79

80 /***
81 * Initialization *

82 ***/
83 polyline:

84 movi 1lpt,lp

85 movih (1lpt)>>16,1p

86 pushs n

87 movi O,opi

88 addai ip,-12,ip; fclr s

89 +addr 1p, 8, .word,dp; fclr t /¥ =>1.0 %/

90

g1 /**

92 ACCEPTANCE LOOFP START

93 * *

94 * Trivial acceptance loop start. Transform local coordinates (with w = 1) *

95 * to clip-space coordinates: *

98 x XC = all*x + a2l*y + a3l*z + a4l *

97 * yc = al2*x + a22*y + a32*z + a42 *

98 * zC = al3d3*x + a23*y + a33*z + a43 *

99 x we = al4*x + a24*y + a34*z + ad4 *

100 **/
101 accept:

102 +addr ip,3,.word; fload rwc; fixr s,xs

103 addr ip,1,.word; fload .x; fixr t,ys /% x[1] */

104 addr op,0,.word; fload .y; fmul .x,ald,s,.t0; fadd t,.t0,t /* al4g*x */
105 movi 16,11i; store xs; fmul .x,all,s,.tl; fadd t,.t1,t /* all*x */
106 addr ip,2, .word; fmul .y,a24,s,.t0; fadd a44,.t0,wc /* a24xy */
107 addr op,1,.word; fload .y; fmul .y,a2l1,s,.t1; fadd a41,.t1,xc /* a2lxy */
108 store ys; fmul .y,a34,s,.t0; fadd wc,.tO,wc /* a34xz */
109 addr 1lp,3, .word; fmul .y,a3l1,s,.t1; fadd xc,.tl,xc /* a3l*z */
110 xor li,lp,lp; fstore z¢; fmul .x,al3,s,.t0; fadd wc,.tO,wc /* al3*x */
111 addr ip,1, .word; fmul .x,al2,s,.t1; fadd xc,.tl,xc /* al2xx */
112 addr ip,2,.word; fload .y; fdiv rwc,wc,rwc /* 1/wc */

113 addr 1p,1,.word; fload .x; fmul .y,a22,s,.t1; fadd a24,.tl,yc /* a22*%y %/
114 mov ¢p2,cpl; fstore x¢; fmul .y,a23,s,.t0; fadd a43,.t0,z2 /* a23*y */
115 fmul .x,a32,s,.tl; fadd yc,.tl,yc /* a32%xz */

116 addr dp,1,.word; fload .x; fmul .x,a33,s,.t0; fadd z2,.t0,22 /* a33*%z */
117 addr dp,2,.word; fload .x; fmul .x,vsx,s,.tl; fadd yc,.t1,yc
118 addr 1p,0,.word; fload zero; fmul .x,wc,mwc,.t0; fadd z2,.t0,zc /* -1*wc */

199

B.4. Single-Precision 3-D Graphics, continued

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
1686
167
168
169
170
171
172
173
174
1756

/3 kK ok ROk K ok ok ok ok 3 ok ok 3K K ok ok Kk 3k ok 3k ok 3k ok ok ok sk ok ok ok ok ok ok sk ak ok ok ok ok ok ok K ok ok ok ok kK ok kK ok ok K K oK ok 3 ok ok 3K 3OK KK ok ok o ok ok ok

* Test if the point is within the viewbox: *
* -WC <= XC <= +WC && -WC <= yC <= +wC && O <= zZC <= 4+WC *
* The six signs are accumulated in cp2 to assist in trivial rejection. *

**/

movi O,cp2; fstore wc; fcmp xc,wc,.gtz /* XC <= wc? */
femp xc,mwe, .1ltz; fbr .gtz,outxpl /* xc >= -wc? */
fecmp yc,we, .gtz; fbr .1ltz,outxnl /* yc <= wc? */
. femp yc,mwc,.ltz; fbr .gtz,outypl /* yc >= -wc? */
fcmp zc,zero,.ltz; fbr .ltz,outynl /* zc >= 0? */
femp zc,we,.gtz; fbr .1tz,outznl /* zc <= wc? */
/% 3 ok ok ok Kok oK K Kk o K K K 3K ok 2k K ok ok K K ok ok 3K ok ok ok ok Kk k ok ak ok ok ok ok ok ok ok ok ok K ok 3k ok 3k 5 ok ok ok ok ok ok ok ok ok K 3 ok K K 3k K 3k %k %k 5k ok ok kK XK %k kK
* Transform clip-space coordinates to screen-space: *
* xs = fix[(xc/we)*vsx + vex] *
* ys = fix[(yc/we)*vsy + vey]) *
**/

addr
adda
movi
addr

8,0pi;

1p,2, .word;
op,opi,op;

dp,0, .word;

fstore yc;

fbr .gtz,outzpl /* unload DSR */

fmul yc,vsy,t

fmul s,rwc,s

fmul t,rwc,t

fadd s,vcx,,s; shsob accept
fadd t,vcy,t; ovneut

/K Kk ok ok ok ok ok ok ok ok K ok Ok ok ok ok ok K ok 3K 3K 3K 3k 3K 3K 3K 3K 3K 3K 3K K kK ok ok K sk ok ak ok kK ok ok dk ok dk ok ok ok ok ok ok ok ok ok ok 3k ak ok ok % % K K % K XK K K X K K

*

ACCEPTANCE

LOOP END *

**/

addr+ op,1, .word;

store xs

addr+ op,1, .word

store ys

fixr s,xs
fixr t,ys
/* store last */

rts

/% KK ok ok K ok ok ok ok ok ok oK oK K K Kok 3K oK ok ok ok ok o ok K ok K K ok 3k 3K K 3 3K K 3k 3K 3k 3k 3k 3k 3k 3k ok ok ok ok ok ok 3k ok sk ok ok ok ok K kK ok ok ok ok 3k sk ok ok K K k ok

* Dispatch to the appropriate clipping routine *
**/

outxpl:
outxnl:
outypl:
outynl:
outznl:
outzpl:
nop

.data

/3K dk0k ok ok ok o ok ok ok koK K oK sk ok ok ok ok ok K ok Kk ok K K K ok ok ok 3k ok ok sk ok ok sk ok kK sk ok sk ok 3 ok ok ok 3 ok sk sk 3 oKk ok k Ok 3K K 3K oK KK s K ok ok ok 3k %k K ok ok K

* data area

*

**/

.align
.float
.float
.float
.float
.float

lpt:
con:

200

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

B.5. Double-Precision Cosine

This example computes the double-precision cosine of
its double-precision input argument. It is written for an
XL-8164 system (32-bit data bus).

Lines 1-31 of the source listing give some preliminary
information on the routine, including its performance
(line 17-20). As shown, the routine requires 28 cycles
for completion when x| < m/4, and 34 cycles when
w4 < x < 3u/4.

The next section of the source listing, line 33-64, gives
the register map for the 3x64 register file. This is a col-
lection of “.reg” assembly directives that assign sym-
bolic names to the registers that are used. The register
map for the integer processor follows on line 66-71.

The data area is defined by line 73-99. The main com-
ponents of the initialized data are the sine expansion
coefficients (line 78-83) and the cosine expansion co-
efficients (line 84-89). Other required constants are
also included. In all cases, these initialized values are
double-precision floating point values.

Actual execution begins on lin 108. As indicated by the
comment on line 105, the first segment of code deter-
mines if |x| < /4 and does additional preliminary cal-

201

culations. For |x| < 1/4 the cosine expansion described
on line 117-132 is used. This calculation involves evalu-
ating the indicated polynomial, an operation that is car-
ried out by line 133-156.

When n/4 < |x| < 3m/4, the input argument is first re-
duced as described by line 158-165 of the source. This
operation is accomplished by line 166-172. For argu-
ments in this range, the result is determined using a
negative sine expansion since

cos(x) = sin[-(x — w/2)].

This computation is described on line 174-188 and per-
formed by line 189-207.

For those cases when 31/4 < |x| the argument is first
reduced by the nearest multiple of w/2. This range re-
duction algorithm is described on line 209-226 of the
source and implemented by line 227-246. For those ar-
guments which are reduced by an even multiple of 7/2
the evaluation is done using the cosine expansion of
line 133-156. When an argument is reduced by an odd
multiple of 7/2, a negative sine expansion is used. For
efficiency reasons, a second implementation of the sine
expansion is used (line 263-289).

B.S.

1
2
3
4
5
6
7
8

9
io
11
12
13
14
15
16
17
18
18
20
21
22
23
24
25
28
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Double-Precision Cosine, continued

/***

* dcos(x) -- compute the double precision cosine of the double precision

* input argument. First the number is reduced to a number from {-Pi/4
to +Pi/4} while noting which quadrant the original number was in.
Numbers between -Pi/4 and Pi/4 are computed using a cosine expansion
and are positive. Numbers between Pi/4 and 3Pi/4 are computed using a
negative sin expansion. Numbers between 3Pi/4 and 5Pi/4 are computed
using a negative cos expansion. Numbers between 5Pi/4 and 7Pi/4 are
computed using a positive sin expansion.

input:
.fOo = double precision input argument in radians

output:
.f0 = double precision cosine of argument

abs(x) <= pi/4 -- 28 cycles
pi/4 < abs(x) <= 3pi/4 -- 34 cycles
3pi/4 < abs(x) -- 60-65 cycles

configuration:
XL-8164 system (32-bit data bus)

note:
This routine will signal an underflow when a tiny number is given as
the input argument. Detecting this condition and not signaling an
underflow on tiny inputs would cost about 6 cycles on the most common
inputs. This cost is felt to be too high for a feature (underflow

*
*

*

*

E 3

*

*

*

*

*

%*

*

x

*

*

*

*

*

%*

*

*

*

*

*

*

*

*

*
detection) which is rarely used. *
*

*
*
*
*
*
*
*
x*
*
*
*
x
*
* performance:
E 3
E 3
*
*
*
*
*
*
*
*
*
*
*
*

3k 3K ok K K ok ok ok sk ok ok ok ok ok Xk kK K K K ok ke kK Kk sk 3k ok 3k ok 3k ok ak sk ak 2k kK k 3k K 3k ok K ok K ok ok ok K 3k ok K 2k ok 3k 3k K K K K ok ok ok ok ok ok ok Xk /
/***
* 3x64 register map *
KoK oK oK oK ok ok ok ok ok ok K ok K ok ok ok ok ok ok ok ok ok ok ok K ok 3k ok ok ok K ok 3Kk koK ok ko ok koK ok K K K KKk Kk Ok koK K KK/

.reg .f0,x /* input argument */

.reg .f0,result /*¥ by convention, result is returned in .fo */

.reg .f1,pi4 /* Pi / 4 */

.reg .f2,ftmpl /* temp necessary for muladd and chained ops */

.reg .f3,ftmp2 /* temp necessary for muladd and chained ops also */

.reg .f4,pi2 /¥ Pi / 2 */

.reg .f4,one /¥ 1.0 */

.reg .f5,x1 /* x° -- the value used in the polynomial expansion */

.reg .f6,c8 /* polynomial constant */

.reg .f7,c5 /* polynomial constant */

.reg .f8,c4 /* polynomial constant */

.reg .f6,c3 /* polynomial constant */

.reg .f7,c2 /* polynomial constant */

.reg .f8,cl /* polynomial constant */

.reg .f6,half /¥ 0.5 %/

.reg .f7,huge /* maximum of range */

.reg .f9,accl /* first accumulator */

.reg .f10,acc2 /* second accumulator */

.reg .fi10,n /* float (fix(abs(x) * 4 / Pi + 0.5)) */

.reg .f11,x3 /¥ XORXRYXS Ry

.reg .f12,xsq /¥ x“¥x° %/

.reg .f11,x4 /¥ X ORXTRXTRRT K/

.reg .f13,zero /% 0.0 %/

.reg .fl4,abs_x /* absolute value of x */

.reg .f15, 2pi /* 2 / Pi */

.reg .f15,fn /* fix(abs(x) * 4 / Pi + 0.5) */

.reg .y,pi2_1 /* first 26 bits of Pi/2 */

.reg .x,pi2_2 /* second 26 bits of Pi/2 */

.reg .y,pi2_3 /* last 53 bits of Pi/2%/

202

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989
B.5. Double-Precision Cosine, continued

65

86 /***************************************#**#**************t*******************

67 * 8137 register map *

68 **!******************/
69 .reg .r0,cff /* address of the coefficient and constants */

70 .reg .rl,rn /* number of Pi/2°s subtracted to bring arg in range */
71 .reg .r2,temp /* scratch */

72

73 /% % 2 2 2k 2 3k 3k 3 ok K ok ok ke ok b K K K ok ok ok ok ok ok ok ok ak kol ke kK kK ok ok ok ok ok ok ok ok ke k ok ok Ok Kk K ok ok ok ok K ok K K K K K K %K Xk

74 * data area *

75 ***t*t***/
76 .data

77 CFF:

78 S1: .word 0x55555542,0xbfc55555 /* These constants have been modified */
79 S2: .word 0x1110f304,0x3f811111 /* to protect Weitek confidential */
80 S3: .word 0x19b92303,0xbf2a01a0 /* information. When these values */
81 S4: .word 0x51e84125,0x3ec71de3 /* used, results should remain within */
82 S5: .word Oxacalcé6d,Oxbe5ae5e2 /* +|- 10 ulp. */
83 S6: .word 0Oxb328dasf,0x3de5d83d

84 C1: .word Oxffffffes,oxbfdfffff

85 C2: .word 0x5554ddb8,0x3fa55555

86 C3: .word 0x16338b21,0xbf56cl6¢c

87 C4: .word 0x78f60d0a,0x3efa019f

88 C5: .word Ox85alfefe,0xbe927df1

89 C6: .word Oxbl75ae94,0x3e21b803

90 _3PI4: .word 0x7f3321d2,0x4002d97¢c

91 PI4: .word 0x54442d18,0x3fe821fb

92 _2PI: .word Ox6dc9c¢883,0x3fed5f30

93 HALF: .word 0x00000000,0x3fe00000

94 HUGE: .word 0x00000000,0x41845f30

95 ONE: .word 0x00000000,0x3£f£f00000

968 PI2_1: .word 0x54000000,0x3ff921fb
97 PI2_2: .word O0x00000000,0x3e110b46
98 PI2_3: .word 0x00000000,0x3c91a626

99 TEMP: .word Ox0,0x0
100

101

102 .text

103 .globl dcos

104 /***

105 * First determine if abs(x) <= pi/4, and compute x**2 and x**4. *

1086 ***/
107 dcos:

108 movi CFF,cff; dfmul x,x,xsq

109 movih CFF>>16,cff; fclr zero

110 addrd c¢ff,PI4-CFF; dfabs x,abs_x

111 addrd cff,PI4-CFF+4; dloadl pi4; dfmul xsq,xsq,x4

112 addrd cff,C6-CFF; dloadm pi4

113 addrd cff,C6-CFF+4; dloadl c¢6; dfcmp abs_x,pi4, .gtz

114 movi O,rn; dloadm cé

115 dfadd pi4,pi4,pi2; fbr .gtz, Above_Pi4

203

- _________________________________]
B.5. Double-Precision Cosine, continued

116
117 /****************t*******#t**i**

118 * Do the cos expansion. The original expansion looked like: *
119 * *
120 * drcos = 1dO+xsq* (cl+xsSq* (C2+XSq* (C3+xsqQ* (c4+Xsq* (c5+x5q*C6))))) *
121 % *
122 * But, we modified it to allow some parallelism: *
123 * *
124 * x4 = xsq*xsq *
125 * tmpl = (C2+X4* (C4+X4*C6)) *
126 * tmp2 = (cl+x4* (c3+x4*c5)) *
127 = drcos = 1dO+xsqg*(tmp2+xsq*tmpl) *
128 % *
129 * This change saves roughly 6 cycles. It costs a bit of precision, *
130 * but our initial evaluation indicates that the loss of precision will *
131 * be less than half an ulp. *
132 ***/
133 cos_ex:

134 addrd cff,C5-CFF; dfmul x4,c6,accl /% X4%CB */

135 addrd cff,C5-CFF+4; dloadl c¢5

138 addrd cff,C4-CFF; dloadm c5

137 addrd cff,C4-CFF+4; dloadl c4; dfmul x4,c5,acc2 /* X4*ch5 */

138 addrd cff,C3-CFF; dloadm c4

139 addrd cff,C3-CFF+4; dloadl c¢3; dfadd accl,c4,accl /* C4+... */

140 addrd cff,C2-CFF+4; dloadm c3

141 addrd cff,C2-CFF; dloadm c¢2; dfadd acc2,c3,acc2 /* c34... %/

142 addrd cff,C1-CFF+4; dloadl c¢2; dfmul x4,accl,accl /* x4*(Cd+... */

143 addrd c¢ff,C1-CFF; dloadm c¢1; dfmul x4,acc2,acc2 /* X4* (C3+... */

144 addrd cff,ONE-CFF+4; dloadl c¢1; dfadd accl,c2,accl /¥ €2 + X4%,.., ¥/
145 addrd cff,ONE-CFF; dloadm one; dfadd acc2,cl,acc2 /* ¢l + x4%... */
146 dloadl one; dfmul accl,xsq,accl /* xsq*tmpl */

147 nop

148 dfadd accl,acc2,accl; /* tmp2+xsq*tmpl */
149 nop

150 dfmul accl,xsq,accl /% xsq*(tmp2+... */
151 ext rn,1,1,temp; br .nez cneg_res /* odd mul of pi? */
152 rts; dfadd accl,one,result /* 1dO+xsq*... */
153 cneg_res:

154 dfadd accl,one,result /* 1dO+xsqg*... */
155 nop

156 rts; dfsub zero,result,result /* fix sign */
157

158 /***
159 * If abs(x) is in the range pi/4 to 3pi/4, then reduction of x is
160 * accomplished by subtracting Pi/2. Note that Pi/2 differs from its 64-bit

161 * ieee representation by only .26 lsbs, so even though the 1lsb of Pi/4 is
162 *
163 * greater than .52 lsbs. The result is then computed using a negative sin

164 * expansion.
165 2k 3 3k 3k 3k 3k ok ok K 2k ok 3k 3k ok ok ok 3k ok ok ok ak ok ok K Kk 3K K ok 3K ok ok 3K ok 3K ok K K 3K ok ok ok dk ok ok K ke K ok ok ok ok 3k ok ok ok ak kK ok K ok 3k K 3K kK K K K K K kK Kk Kk

168 Above_Pi4:

*

*

*

less than the 1lsb of Pi/2, subtracting Pi/2 from x results in an error no *
*

*

*

/

167 addrd cff,S6-CFF+4; dfsub abs_x,pi2,x1 /* |x|-pi/2 */

168 addrd c¢ff,S6-CFF; dloadm c86

169 addrd cff,S5-CFF; dloadl c6; dfmul x1,x1,xsq

170 addrd cff,S5-CFF+4; dloadl ¢5; dfcmp x1,pi4,.gtz /% |x| <= 3pi/4? */
171 dloadm ¢5;

172 fbr .gtz,above_3Pi4; dfmul xsq,xsq,x4

204

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

5 S ——

B.5. Double-Precision Cosine, continued

173
174 /**********#**

175 * Do the negative sin expansion. The original expansion looked like: *
176 * *
177 * drsin = X + X*xXsqQ* (Cl+XsSq*(C2+XsSqQ* (c3+XSq* (Cc4+Xsq* (c5+xsq*c6))))) *
178 % *
179 * But, we modified it to allow some parallelism: *
180 * *
181 * x4 = XSQ*xsq *
182 * tmpl = (Cc2+x4*(Cc4+x4%CB)) *
183 * tmp2 = (cl+x4*(c3+x4*c5)) *
184 * drsin = x+(x**3)* (tmp2+xsq*tmpl) *
185 * *
186 * Since cos(x) = sin(pi/2-x) = sin[-(x-pi/2)], the expansion is evaluated *

187 * with -(x-pi/2).
188 ***/

*

189 addrd cff,S5-CFF+4; dloadl ¢5; dfcmp x1,pid,.gtz /* |x| <= 3pi/4? */
190 sin_ex:

191 addrd cff,S4-CFF+4; dfsub zero,xl,x1 /% —(x-pi/2) */

192 addrd cff,S4-CFF; dloadm c4; dfmul x4,c6,accl /* X4%Cc6 */

193 addrd cff,S3-CFF; dloadl c4; dfmul x4,c5,acc2 /* x4*cH */

194 addrd cff,S3-CFF+4; dloadl ¢3; dfadd accl,c4,accl /* C4+... */

195 addrd cff,S2-CFF+4; dloadm c3

196 addrd cff,82-CFF; dloadm c¢2; dfadd acc2,c3,acc2 /* C3+... ¥/

197 addrd cff,S81-CFF+4; dloadl c¢2; dfmul x4,accl,accl /* X4%(C4+... */
198 addrd cff,S1-CFF; dloadm c1; dfmul x4,acc2,acc2 /* X4%(C3+... */
199 dloadl c¢1; dfadd accl,c2,accl /* C24x4*... */

200 dfadd acc2,ci,acc2 /* cl+x4x. .. */

201 dfmul accl,xsq,accl /* xsq*tmpl */

202 dfmul xsq,x1,x3 /% X*¥%3 */

203 dfadd accl,acc2,accl /* tmp2+xsq*tmpl */
204 nop

205 dfmul accl,x3,accl /% X3%(tmp2+... */
208 nop

207 rts; dfadd accl,xl,result /* X 4+ X3%(... */
208

209 /**#***********************t***#**

210 * At this point we know that x, the input parameter, has an absolute value *
211 * greater than 3Pi/4. The following code performs the range reduction and *
212 * decides whether to do a sin or cos expansion. *
213 * *
214 * Reduction of x is done by splitting Pi/2 into three parts. The top two *
215 * parts each have 26 or fewer significant bits. These can therefore be *
216 * multiplied by integers with up to 27 significant bits without any loss of *
217 * precision. So, the algorithm looks like: *
218 * *
219 * n = Float(Fix_truncate(Abs(x) * 2/Pi + 0.5)) *
220 * (i.e. x*2/Pi rounded to the nearest integer) *
221 % X -= (n * Pi/2 part 1) (most significant 26 bits of Pi) *
222 * X -= (n * Pi/2 part 2) (next most significant 26 bits of Pi) *
223 * x -= (n * Pi/2 part 3) (54 more bits of Pi) *
224 * *
225 * If x is greater than "huge”, then it is out of range. *
226 ***/

227 above_3Pi4:

228 addrd cff,_ 2PI-CFF

2290 addrd cff,_2PI-CFF+4; dloadl _2pi

230 addrd cff,HALF-CFF+4; dloadm _2pi

231 addrd cff,HALF-CFF; dloadm half; dfmul abs_x,_2pi,n; /¥ x*2/pi */
232 addrd cff,PI2_1-CFF+4; dloadl half

233 addrd cff,PI2_1-CFF; dloadm pi2_1; dfadd n,half,n

234 addrd cff,PI2_2-CFF+4; dloadl pi2_1

235 addrd cff,PI2_2-CFF; dloadm pi2_2; dfix n,fn

205

B.5. Double-Precision Cosine, continued

236
237
238
239
240
241
242
243
244
245
2486
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
278
280
281
282
283
284
285
2886
287
288
289
290

addrd
addrd
addrd
addrd
addrd

addrd

cff,HUGE-CFF+4

dloadl pi2_2
dfloat fn,n

cff HUGE-CFF; dloadm huge;dfmul pi2_1,n, ftmpl,.t1; dfadd ftmp2,.t1, ftmp2
cff,PI2_3-CFF+4; dloadl huge;
cff,PI2_3-CFF; dloadm pi2_3; dfmul pi2_2,n, ftmpl,.tl; dfsub abs_x,.tl,x1

cff,TEMP-CFF;

cff, TEMP-CFF;

ext rn,0,1,temp;

addrd
addrd

cff,C6-CFF;
cff,C6-CFF+4;

dloadl pi2_3

store fn; dfmul pi2_3,n,ftmpl,.t1l; dfsub x1,.t1,x1
dfcmp abs_x,huge, .gtz
load rn; dfmul .x,ftmpl, ftmpl,.t1; dfsub x1,.t1,x1

fbr .gtz,out_of_range;
br .eqz $+2
br sin_ex

/* even multiple? */
/* no, use sin */
dfmul x1,x1,xsq
dloadl cs
dloadm c6;
br cos_ex;

dfmul xsq,xsq,x4 /* use cos */

/***
* x is out of range -- return O. *
***/

out_of_range:

rts; clr .fo

/% ok ok ok ok K oK ok 3 ok K 3k ok K K ok ok ok a8 o ok ok i ok Kk ko Ok oK KR K Kk ok K ok 3k koK ok ok ok K 3Ok i 3k ok 3Kk 3k ok ok ok ok oK kK K K ROk K

* The sin expansion is repeated here in order to save several cycles. *
***/

Sin_ex:
addrd
addrd
addrd
addrd
addrd
addrd
addrd
addrd
addrd
addrd
addrd
addrd

nop

cff,SB8-CFF+4;
cff,S6-CFF;
cff,S5-CFF+4;
cff,S5-CFF;
cff,S4-CFF;
cff,S4-CFF+4;
cff,S3-CFF;
cff,S3-CFF+4;
cff,S2~-CFF+4;
cff,S2-CFF;
cff,S1-CFF+4;
cff,S1-CFF;

ext rn,1,1,temp;

sneg_res:

nop

dfmul x1,x1,xsq
dloadm ¢6; dfsub zero,x1,x1 /* —(X-n*pi/2) */
dloadl c¢8; dfmul xsq,xsq,x4
dloadm c¢5
dloadl c5; dfmul x4,c6,accl /* X4%C6 */
dloadl c4; dfmul x4,c5,acc2 /* x4*c5 */
dloadm c4
dloadl ¢3; dfadd accil,cd,accl /* c4+... */
dloadm c¢3
dloadm ¢2; dfadd acc2,c3,acc2 /* C3+... ¥/
dloadl c2; dfmul x4,accl,accl /* X4% (C4+... */
dloadm c1; dfmul x4,acc2,acc2 /% X4%(C3+... */
dloadl c¢1; dfadd accl,c2,accl /% C2+x4%.,, */
dfadd acc2,cl,acc2 /* cl+xd4x*... */
dfmul accl,xsq,accl /* xsq*tmpl */
dfmul xsq,x1,x3 /% X**3 *x/
dfadd accl,acc2,accl /* tmp2+xsq*tmpl */
dfmul acci,x3,accl /% X3*%(tmp2+... */
br .nez sneg_res /* odd mul of pi? */
rts; dfadd accl,xl,result /¥ X 4+ X3%,.., *x/
dfadd acc1l,xl,result /* X + X3%,.. */
rts; dfsub zero,result,result

206

Appendix C. Known Bugs in the 3x64

If the result of any floating-point operation (single or
double; add, subtract; mul, div, sgrt; convert; etc.) is
bypassed into the second operand of a division opera-
tion of corresonding precision, the division operation
may produce an incorrect result. The code below de-
scribes the situation in which the bug may occur:

(1) fpop fa .fb .fe
nop
fdiv fc fc fe

For example (operands given in hex):

fadd 40d00000 00000000 fc
nop
fdiv 3f800000 fc fd

In this example .fd should be .3e1d89d9, but the 3x64
would give 3e00000.

This bug is pattern-dependent; it occurs only if both the
preceding fpop and the division operation have specific
operands. We do not know what these patterns are. If
the operands are random, the bug will occur in at most
1% of divide operations.

3164/3364
64-BIT FLOATING-POINT
DATA PATH UNITS

November 1989

The bug affects the current production silicon.

WORKAROUND

Do not bypass into the second operand of division oper-
ations. For example, the following two code sequences
will be executed correctly.

Current code should be examined for all occurrences of
“2” and replaced with “3” (see figure 212).

This fix increases division latency by one cycle; in the
case of single precision, from 10 to 11; double precision,
from 17 to 18 cycles. Considering the relative frequency
of division operations, the overall performance impact is
negligible.

XL-8064 CUSTOMERS

Custsomers using WEITEK compilers in conjunction
with the XL-8164 or XL-8364 chip set must replace the
parallelizer and math libraries with the updated version
that contains the fix described in figure 212. A tape that
contains the updates is available from WEITEK free of
charge.

(2) fpop fa fo fc
nop
fdiv fc fc fe
3) fpop fa .fb fe
nop
nop
fdiv fc fc fe

Result in .fc is bypassed into the
first, not second operand of the
division operation

Resuit in .fc is not bypassed at all

Figure 212.- Workaround

207

Ordering Information

Ordering P/N Cycle time Package temperc:zree range Comments
3164-GCD-100 100 ns 144-pin PGA 0-85° C In production
3164-GCD-075 75 ns 144-pin PGA 0-85° C In production
3164-GCD-060 60 ns 144-pin PGA 0-85° C In production
3164-GCD-050 50 ns 144-pin PGA 0-85° C Samples available*
3364-GCD-100 100ns 168-pin PGA 0-85° C In production
3364-GCD-075 75 ns 168-pin PGA 0-85° C In production
3364-GCD-060 60 ns 168-pin PGA 0-85° C In production
3364-GCD-050 50 ns 168-pin PGA 0-85° C Samples available”

* Status as of press time. Check with your sales representative for the latest availability.

Revision Summary

The following changes have been made since the April, 1989 data book:
1. Specifications for the 3x64-50 were added; those for the 3x64-50T were deleted
2. Appendix C, Known Bugs in the 3x64, was added

3. The Ordering Information section was updated

208

