120 R R R A TR VU WY YRR R T3 T T T T T T WL WA Wl Wi W FU WU N L TUCRNN RS W Ay LWL I LY UV URY v

UNCLASSIFLED | o5 \
. 'SECURITY CLASSIFICATION OF THIS PAGE (When Da.a Infered). I l ’ u, r” F FQD\! ; SIS

- - @
REPORT DOCUMENTATION PAGE BET ORE COMPL BT Ino EORM A
- 1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER : ‘ ':
«f AFIT/CI/NR 88-£ 0 ! , \
m TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED | ' }E‘

(o THE CONCURRERNT £V VIRONMEVT oF MS THESTS e
(o) THE SEQUENT (BALAN Ce fooo 6. PERFORM\iNG 03G. REPORT NUMBER . &
m AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(®) , '.::"
\ |:‘:O
< fFloyp PAVENPoRT PR
l PERFORMING ORGAN|IZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK ‘ '-\'
Q AFIT STUDENT AT - AREA & WORK UNIT NUMBERS : ,":

. i

< EXAS AWM unwersiTy 2
CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE oy

1988 '
13. NUMBER OF PAGES ‘,
134 A)
14. MONITORING AGENCY NAME & ADDRESS(/! different from Controiling Ollice) 15. SECURITY CLASS. (of this report) ?""
AFIT/NR J
Wright-Patterson AFB OH 45433-6583 UNCLASSIFIED R

T5a. DECLASSIFICATION/ DOWNGRADING ®

SCHEDULE e
6. DISTRIBUTION STATEMENT (of this Report) ,_;"

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE .:(l

bl

~ Toone

e - a
. AUG 0 31988 &'

74

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, I diflerent {from Repor

SAME AS REPORT

»

s by ~
P, o ':r‘.&’q,'.'.}&{'.{‘:.’.

8
us

18. SUPPLEMENTARY NOTES

Approved for Public

LYNN E. WOLAVER
Dean for Research ah

easezA/}Aw AFR 190-1 - N
b 1 b f s

: : Professional Development N
Air Force Institute Of Techno]ogg N
Wright-Patterson AFB QH 45433-6583 e
19. KEY WORDS (Continue on reverse aide if necesaary and Identily by blnck number) .

20. ABSTRACT (Continue on roverse alde If necessary and ldentify by block number)

ATTACHED

o \."l';ﬁ{':". "A "-:"-'.-: v." q

If.-'.f-
\-

DD ,"5n", 1473 EoiTion OF 1 NOV 65 1S OBSOLETE Ur;CU\SS]EIEq Vo

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) .

U ea woA : .
E AN A N T L L T A O R AT TR, ’-'{-’ St -I“-l-. :
L SRt SRR VA "N '

n.'.!\l..

[P NN WU TSN b LSO SOOI IO WO AU AU OV R) 40p Sal tad Yoy tag Na) <ag ‘ag sal y 0 R O UV T DV Y DY DV U TS G

1 Introduction

—— ~y
~ Concurrent programming is an intense area of research in computer science. There are

two types of concurrent programming. Multiprogramming refers to multiple processes
executing on a single processor in the same time period by using a method called “Time-
slicing”. Multiprocessing refers to multiple processes which execute at the same time each
on its own processor. This paper deals with the issues of multiprocessing. A process is

defined as a section of code which is executed sequentially. -

‘Concurrent programming has become popular for two primary reasons. First, the computer

hardware industry has been building more and more complex multiprocessing systems at
cheaper and cheaper costs. Second, multiprocessing systems enable programmers to build
software systems which run at a speed unobtainable on most single processor systems.
New complex applications which require such speed involve database systems, large-scale

scientific applications, and real time, embedded systems.

However, there is a problem with these new multiprocessing systems. The problem centers
around the fact that the software industry has failed to keep pace with the multiprocessing
enhancements produced by the hardware industry.- A great amount of research has been
accomplished and many models of concurrent processing have been developed that deal
with the issues of concurrent programming. However, few working systems have been
produced which allow the programmer to effectively use the multiprocessing environment.
Those which have been produced provide little or no standardization. The main issues of

concurrent programming are process creation, synchronization, and communication.

This paper has two objectives. The first objective is to investigate and document the

mechanisms for process creation and control on a commercial multiprocessing system. The
Texas A&M Sequent Balance 8000 Multiprocessing System is the target of this objective.

The second objective is to add a new mechanism to this existing system that easily and

.o o
- - R (_ . Yo, N . -

clearly expresses process creation.

QO .._ oy 2 o .,, NN ™ M W -*_,.-.\v ae .'-_;- A3 ».,‘w"-"':"l"f'(' ,, 5.

AL A AN AL WE RS AN N

™Y .
Al
Lo U A

I A A
e .

T3

—’- et et

=y 4 "

{ = P LY

RO T I W T U W R T ey 0 fat @a® & 1ot _fa¢ fu® - ¥ 2 S ot ot 8 A fat Ba®’ §a¥ Bo® St

o Section 2 of this paper discusses the hardware of the Sequent Balance 8000 Multiprocessing
! System. Section 3 introduces the DYNIX Operating System and discusses the mechanisms
provided for process creation and control. Examples are included for each mechanism in
order to clearly demonstrate the functionality. Section 4 discusse§ the implementation
of a precompiler for the C programming language which provides programmers with the
“cobegin-coend” construct. This construct allows programmers to easily create concur-
rent processes. Section 5 discusses the problem of synchronization and provides software

solutions to the mutual exclusion problem.

K
k)
Ks
¢
o
Ky
']
'
‘l
N
i
Y
.
v
h.
-,
D
;I
i)
0
,
L)
N
) .
o .
N e - PR ‘;'
‘: - Accegsion bor rd l
! | NTIS afaad v_
' DRI aan
! ~
, ‘ Vuar oo ed - '
[N S S R T ,__‘_J
i _ .
)
+
B i Py - _.’
) Distpination, i
\ — —
Avaliot: ot v)
Ave 2o ,
D13t S S

P o S
N
,\ H

e

o

‘ » ‘4‘"“»' S8 TR e .r"e"u’

. ’ P e
” . o -y W W A M gy ® oy W “ - " SN e R g ‘' g
J08 0,800,900 8,000,800 8,0 0000 1 90T e) %, N5 N, B Gre Te S O N i A L n e A i et

I R T

o -

..... i : - - N
;Q RS YL NN W WL XM MU L 0L WL 8 M AN T T W WO W Bat, 80" Ha® a® patoe® et st yut Gat pat gat

THE CONCURRENT ENVIRONMENT
OF THE
SEQUENT BALANCE 8000

by
Floyd Davenport, Captain, USAF

Texas A&M University
Submitted in Partial Fulfillment of the Requirement

for the Degree of
MASTER OF COMPUTER SCIENCE

1 July 1987

R N R e e e e e e

A .

WU R U L U ~ T ST TNV w vt NIV S
Table of Contents
1 It roduCtion oottt e e e e e 1
2 Sequent Balance 8000 Architectureco.iiiiiiiiiiiii i 3
2.1 SBBO00 Bus . .iit it e e e e 3
2.2 Processor Boards ...ttt e et e 5
2.3 Memory Modulesoouiiini i e 5
2.4 SCED Board ...t e e e e T
2.5 MULTIBUS Adapter Boardcoiiiiii e 7
2.8 SLIC BUS .ttt ittt ittt e e e e T
2.7 Mutual Exclusion ... e i et e 8
3 Parallel Programming Library i i 9
3.1 FOTK ot e e e e 10
32 GetPId oottt e e e e 12
B3 Exit and Walt ... i e e e e 14
3.3.1 Detecting Errors using Exit and Wait 17
3.3.2 Detecting Errors on Forksooo i 19
3.4 M_Fork and M_KIILProcscoouiiiiiiiiiii i et e e 22
3.4.1 Fork versus M_Fork oo e 24
3.5 M_Set_Procs and CPUS.Onlineoiiiiiiiiiiiiiii e iiiieeeaannns 26
3.6 M _Get Myild .ot e e e e e e 28
3.7 M_Lock and M_Unlockciiiiiiiiiiiii it ittt ineeens 30
3.7.1 The Fairness of Locks ...ttt et e 32
3.7.2 Multiple Lockscoiniiin i e 34
3.7.3 Omission and Commission Errorscciiiiiiiiitiniiniiineennnns 36
B 8 M S M ittt e e e e 38
3.9 M_Park_Procs and M_Rele Procs ..ottt iiieieaens 40
3.9.1 The Inflexible M_Park Procscciiiiiiiiiiiiii it 42
3.9.2 The Efficiency of M_Park_Procs and M_Rele Procs 45
3.10 S.Lock and S_Unlock ..ottt e e e 52
3.11 S_Init_Barrier and S Wait_Barrierottt 55
3.12 M Single and M _Multi ... e 58
R T8 2 < AP 62
3.14 Matrix Multiply ...ooviiii i e 64
3.15 Shared Memorycitinniiiiit it ettt e 67
i
Dt T o I T T Tt T T T T T NN A TS T T NN -~

‘.

Ao

L

LR AP SR 2.4 JEN T 8.

L

b S

'y "— M‘l‘.}‘."vf‘r’

Y‘t"' (3

-

o, \‘;\

AN

1Y L2 LAY NN NN B S

LA

7 b T e e T
.‘! "l“-{._\{)l

[

RSN *;_'1-_'; e

SO

)

R P Y

R R L R R X O R A R T T oY ooy . o
Table of Contents (continued)

4 Cobegin - Coend Implementationcoiuiiiiiiiiiiiiiiiiiiiiii i, 70
4.1 Precompiler LOogICoiiiiiniii i 71
4.2 Examples of Cobegin-Coendt 75

4.2.1 Function Calls ... e 75
4.2.2 Blocks of Code ..ot e 79
4.2.3 Block Statementsiiiiiiiiiii e 83
4.2.4 Nesting Cobegin Blockst 87
4.2.5 Dining Philosophers ...t 91
4.2.6 Bounded Buffer 94
4.2.7 Readers /WIitersooiiiiiiiiii i it it 97
4.2.8 Matrix Multiply «.ooinniiii i e et et e 100

5 Synchromizationc.iiiiii i i et e e, 103
5.1 Peterson’s Solutionoiiiiiiiiiiii 104
5.2 Eisenberg and McGuire’s Solutionooiiiiiiiiiiiiiiiiiiiiiiiie 106

6 ConClUSION . ..o\t e e e 109

Bibliographyo e e 111

Appendix A — Precompiler Code ... 112

Appendix B - Parallel Pascalt 126

Appendix C - Introduction to Man 3P i 131

:‘}? < ¢ 3

AR b

rd

&

o o v WY
L. -

x_B_1 _.
e e

R o g SR RY
-— ‘-.—--

L ‘l’ f1' o Ps ‘l’ PA LS

PR

x

,} “A"‘l f’ 23 L’

oW
1

T
",

"_&l
(J e

<: ': .o 'l-.'\. LY S l.."‘-.‘; .'.' '\. 'l' ': \‘-

g B g N BT D a G N G B D e) ad R K R STl ol 0 e 008 ah el A e A M B TRVl g b Sl A 6 A A AT A

N 1 Introduction

“

Concurrent programming is an intense area of research in computer science. There are
;.. two types of concurrent programming. Multiprogramming refers to multiple processes
f" executing on a single processor in the same time period by using a method called “Time-
‘ slicing”. Multiprocessing refers to multiple processes which execute at the same time each
" on its own processor. This paper deals with the issues of multiprocessing. A process is
j: defined as a section of code which is executed sequentially.
I
’,E: Concurrent programming has become popular for two primary reasons. First, the computer
N hardware industry has been building more and more complex mulliprocessing systems at
;i" cheaper and cheaper costs. Second, multiprocessing systems enable programmers to build
;: software systems which run at a speed unobtainable on most single processor systems.
§ New complex applications which require such speed involve database systems, large-scale

scientific applications, and real time, embedded systems.
;i' However, there is a problem with these new multiprocessing systems. The problem centers
;:: around the fact that the software industry has failed to keep pace with the multiprocessing
K enhancements produced by the hardware industry. A great amount of research has been
:‘ accomplished and many models of concurrent processing have been developed that deal
™ with the issues of concurrent programming. However, few working systems have been
. produced which allow the programmer to effectively use the multiprocessing environment.
! Those which have been produced provide little or no standardization. The main issues of
8 concurrent programming are process creation, synchronization, and communication.
3
s This paper has two objectives. The first objective is to investigate and document the
mechanisms for process creation and control on a commercial multiprocessing system. The
2 Texas A&M Sequent Balance 8000 Multiprocessing System is the target of this objective.
‘o The second objective is to add a new mechanism to this existing system that easily and
2 clearly expresses process creation.
“
P
W
:.Ea
" 1
N
Ll)

3
N e e e N e - . . e e e
BN P N N A P s N P e N A A A O I AN O AT A

AR AR PR AN TN AN R AN Y B % e, B a Vet R R v-.-v".-», .<, AN o~'.g.| 8800 4 8, “ath e\ et ata ol uigt Nat ARt gyt ot 0 G0 Mt ¢

W,
’
y
Section 2 of this paper discusses the hardware of the Sequent Balance 8000 Multiprocessing k!
System. Section 3 introduces the DYNIX Operating System and discusses the mechanisms .;
provided for process creation and control. Examples are included for each mechanism in V-
order to clearly demonstrate the functionality. Section 4 discusses the implementation 3
of a precompiler for the C programming language which provides programmers with the :
. . . .
“cobegin—coend” construct. This construct allows programmers to easily create concur- "
rent processes. Section 5 discusses the problem of synchronization and provides software !
solutions to the mutual exclusion problem. ::‘
iy,
F‘
h
N
"

R G AL AR A A 7

'; s

.

Y &
a e
- 4 a (]

L E) T -'l""'-')"i'l

P
ol

&7

e J

Pt R L

f-f'-

Oy R e T T e A

RTINS RIS ELEAN,

12T,V o i et e Lt 0.0 TR M ATARS RO R T RN AN A RN AT T O T R T Ty TV Y DY DV Y YY)

2 Sequent Balance 8000 Architecture

The Sequent Balance 8000 is a tightly coupled, symmetric, multiprocessor computer with
a common pool of shared memory. Sequent Computer Systems, Inc. released the
Balance 8000 in 1984. The Balance 8000 supports both general purpose, multiuser ap-
plications and dedicated parallel applications. The Balance 8000 is based on a Shared
Memory Architecture. This means that processes communicate by reading and writing
to shared data structures. Processes can execute on any CPU, independent of any other

process. The processes use shared memory to communicate and to synchronize activities.

The Balance 8000 operating system, DYNIX, is a version of UNIX 4.2bsd that has been
enhanced to provide features of UNIX System V and to exploit the features of the parallel
architecture. DYNIX includes a Parallel Programming Library that simplifies the use of
shared memory and the system’s hardware-based mutual exclusion mechanisms. It also
distributes the responsibility of scheduling, handling interrupts, and housekeeping duties
among the CPUs.

The Balance 8000 is an expandable, high performance parallel computer. The Balance 8000
has a chassis which can contain 12 card slots into which component boards are placed and
configured. The following boards can be used: MULTIBUS adapter board, CPU, Memory
module, or a SCED board. The Balance 8000 includes three buses, one system bus and
two 1/0 buses.

2.1 SB8000 Bus

The Balance 8000 is built around a 32 bit wide bus called the SB8000. This bus links
the systemn’s CPUs, system memory, and I/O subsystems as shown in Figure 1. The
SB8000 supports data packets of 1, 2, 3, 4, or 8 bytes and has a channel bandwidth of 40-
Mbytes per second with a sustained data transfer rate of 26.7 Mbytes per second. Optimal
performance is obtained by using data packets of 4 or 8 bytes. This common data bus

greatly simplifies the addition of system components.

R o o

AR AR AL

Ve

Wl R S

’o

(N O S

-.\

— v

— 1ox3|dyjnW

1=J']ISSE T} “

wn
O T
L seAlnq edo) seaug edoj—— 1 € o

2 =
C @)
n As1g ASI] ————] W
snd 00084S kg

K

>

pipog)

Laysie PlDog e1Aqngz SNdS ek || saydopy | — 2
a3o0s AHON3IN sSNgaiLInn "

J\.H

3

g

ot

-.'l

—1 <5

P o
youloy,3 %
>

M3IAY3A0 0008 3ONVIVE 3

| 8.4nbiq r...,

.
v

'
o

Y

e oA

ARANY o= e b ol VAW RRAA o= N 2725

" (RS 't

.

R . bed fat b fa¥ 120" A ov

N o - k& . e
- ¥ ,.. a * 4 ‘. & 8 ’ ..' ., - b > v

2.2 Processor Boards

The Balance 3000 can have from two to twelve NS32032 CPUs (packaged two to a board).
The CPUs run at 10MHz and include a floating point unit, a memory management unit. an
8 Kbyte local memory, and an 8 Kbyte cache. Each CPU shares memory via the SB8000
(see Figure 2). Each CPU is identical and can execute both user code and kernel code.
Each CPU issues a 24 bit virtual address (every process can access up to 16 Mbyvtes). The
CPU’s Memory Management Unit translates that address into a 25 bit physical address.
The SB8000 supports a 28 bit address and uses the higher order bits to address the different
1/0O subsystems. The local memory holds highly used kernel code and data structures to
decrease contention on the SB8000. The cache memory also reduces the contention for the
SB8000 bus. Cache data is organized into 512 rows each with two eight byte blocks. If
a read miss occurs on a processor’s cache, a new block of data is read from memory and
replaces the least recently used block of cache. If a CPU wishes to write to memory, it will
first update its cache if the block resides in the cache. It will then send a write request
to the SB8000 bus to update the block in memory. Each processor monitors all writes to
memory. If write to memory from another processor addresses a block in cache, the block
is marked as out-of-date and a read miss will occur next time it is accessed. The Computer

Science Department’s system currently conte’'ns 10 CPUs.

2.3 Memory Modules

The system can support up to four memory modules with a total of 28 Mbytes of physi-
cal memory. An individual process can access up to 16 Mbytes of virtual memory. Each
memory module consists of a memory controller (whick contains 2 Mbytes of RAM), and
optionally, a memory expansion board with 2-6 Mbytes. A memory controller and expan-
sion board occupy one slot in the Balance 8000 chassis. Each memory module can respond
to a read request in 300 ns (3 cycles, 2 cycles [ur a 4 or 8 byte read or write request).
Multiple operations are pipelined to enhance performance. Memory modules can also be
interleaved if equal sized memory modules are used. It would appear that the Balance

8000 can access up to 32 Mbytes of memory (25 bit physical address and four memory

modules with 8 Mbytes each). However, one Mbyte of memory is 1eserved for cach of a
possible four MULTIBUS adapter boards.

....... . . e .
o P _ KT A T I I AR) S

Pt S, ¥ DV NPT NN LW S VLV W

A ST '.’E

- -

1y

1.
-

kY

P e

RN

kel sl ot X A o
g -

Xy,

AT

.7

R
XA

N L XX NI

AR A
N

s

[y

..\. N

-

)

b

% %

(.(.('(' [t

¢
e

A

Y Y]

Land P 8 ok o o

s 7

0
¢ LA

»

0

. UL S R

.J- -‘..

b

il

» S

-

x

Hun julod Buypol Nnd4
Hun juswisboubpw Adowon NAWN

sSNg 00088S
aboio}g C X X] aBbuoyg
ID3O] MR [DOO] M@
8aysD)H MY SNdd ¢! - ¢ aUsSDy MG
410858204y Jossedold
Z¢0Z¢SN Z¢0ZESN
Nd4 NN Nnd4d NN

NOILVZINVOYO Nd2
0008 3JONVIVE
NdO Z eJnbiy nNdo

o s

- 2
-
-

-
-

e e =
o’ =T

PN

.:-..

AT AT AT AP AP

e e e
e T
S

o

n-,-

-

LA PR

JN N

v e, e e
et

AP

Lot

R T RN R A R P R S WM R IO T N L v e Aas

3
’
3
2.4 SCED Board 2
The Balance 8000 requires at least one SCED board and can contain up to four. The SCED ;’
' board supports many functions. It connects to the Small Computer Systems Interface . '
(SCSI) bus. This bus is designed to support high speed, high volume data transfers ,
between memory and peripherals such as disk and tape drives. The SCED board allows "
the Balance 8000 to connect to other systems in the local area using Ethernet. It is used to

perform system startup and system diagnostics. The SCED board also provides a R$232-C -
interface to connect the system console. The SCED board packages data into eight byte E'.;
blocks to efficiently use the SB8000 bus. E
2.5 MULTIBUS Adapter Board .
The Balance 8000 can include up to four MULTIBUS adapter boards. The MULTIBUS :::
adapter board connects to MULTIBUS, a general purpose bus protocol that supports a Ny
wide variety of terminais, printers, disk units, and tape drives. Peripherals can include !
RS5232-C compatible devices such as a one-half inch tape drive or a 396 Mbyte disk drive. _
These peripherals can be connected via one or more terminal multiplexors on the MULTI- N
BUS. N
L‘
2.6 SLIC Bus :-
7

The SB8000 includes an independent one bit data path called the System Link and In-)
terrupt Controller (SLIC). This bus is for low level communication (interrupts) between
system components. The SLIC bus supports a high speed, synchronous, bit serial, proto- iy
col. Every component board on the Balance 8000 includes a Sequent designed VLSI SLIC
chip. All SLIC chips are connected to the SLIC bus to manage interprocessor communi- .
cation, access to kernel data structures, interrupts, diagnostics, and configuration control. c
Only one operation can be performed on the SLIC bus at a time. If two CPUs both try \
to use the SLIC bus at the same time, the one with the lowest priority will wait. If both o
CPUs have the same priority, the one with the highest CPU number succeeds. The CPU ;'
priority is based on the priority of the process currently executing on the CPU. To ensure 23
that a CPU will eventually access the SLIC bus, priorities are updated once every second. E
Processes which have been idle longest receive higher priorities. "’
2

- "

i

»

¢

e e o A e e TN N T Nl D T L L AR WAL RN \"E\‘,;'-_.'

R TR P R R R I NG T PSS, T R A X tabattatat . e ——

-

o .y

»

&

s]
Al

e

Al A

2.7 Mutual Exclusion

In any multiprocessor system based on a shared memory architecture, mutual exclusion
is an issue. Mutual exclusion ensures that a sequence of operations acts as an indivisible
operation. Any operation on a shared variable should be completed before another process
accesses that shared variable. The Balance 8000 solves the mutual exclusion problem by
providing programmers with a set of hardware locks. The Balance 8000 can have up to 64k
hardware locks (16K locks for each MULTIBUS configured). These locks are physically lo-
cated on the MULTIBUS Adapter Boards and are known as Atomic Lock Memory (ALM).
Each time a lock is accessed, a test-and-set operation is performed. This operation is an
atomic operation which will test the state of the lock (LOCKED or UNLOCKED), LOCK
the lock if it is UNLOCKED, and return its state. The main purpose of the hardware locks
is to ensure mutual exclusion on a set of virtual software locks. The software locks are
created by the programmer and placed in an application’s shared memory. An application
can create as many software locks as will fit in its shared memory. These software locks
ensure the mutual exclusion needed by an application for its critical sections. The soft-
ware locks work the same as the hardware locks, except their operations are not atomic.
A process must first obtain a hardware lock before accessing its software locks to ensure
that the software lock’s operations are atomic. After a process has obtained a hardware
lock, it may perform an operation on its software lock. The process will then release the
hardware lock for other processes to access. To ensure that multiple processes attempting
to obtain the same software lock first obtain the same hardware lock, a relationship must
be set up between the two types of locks. DYNIX accomplishes this through a hashing
algorithm, where the address of the software lock is hashed to an address of a hardware
lock. This implies that many unrelated applications may try to obtain the same hardware
lock. Although, this may slightly effect the run time of an application, mutual exclusion
is still ensured. The routines found in the DYNIX Parallel Programming Library enable
programmers to create and use software locks. By using these routines the operations on

the hardware locks become transparent.

T T N N n N R T T T T P RN e
Qo Cn e e At L VRGN LAY LAY

oy

WY VLYY,

i

J
..v

[%o 2v" 3¢ 7

. A s,y

A

PO OO

"y

PO

, YNNG Y

‘>

a

g

»
el . ,- 4-41_ ,'.N.-._{‘- AT _..h

VY ¥ X

-4

-

Y-

3 Parallel Programming Library

This section introduces the routines which comprise the Parallel Programming Library.
These routines support multitasking in C, Pascal, and FORTRAN. The library is located in
/usr/lib/libpps.a. These routines can be linked to a program from the library by including
the -lpps option in the cc command for C programs, the -mp option when compiling Pascal,
or the -F option when compiling FORTRAN programs. The following discussion and
examples are limited to the C programming language. Not every routine in the Paralle]
Programming Library is covered, but most of the routines are discussed and examples
are included to illustrate their use. In addition to the routines found in the Parallel
Programming Library, the fork, exit, and wait routines are explained. These three
routines are found in any current version of Unix and provide a simple mechanism to

create multiple concurrent processes.

DYNIX includes two C header files which contain declarative statements for the Par-
allel Programming Library routines. Both of these header files reside in the directory
/usr/include/parallel. The header files are named microtask.h and parallel.h. Refer to
Section 3P in the DYNIX Programmer’s Manual and Appendix C in this document for
information on which file to include for each routine. These files are included in each of

the examples that illustrate routines from the Parallel Programming Library.

DYNIX uses two terms to describe parallel programming, microtasking and multitasking.
The terms relate to two different methods which are used to partition a program for parallel
execution. Microtasking refers to the idea of “Data Partitioning”. In this method, a set of
data is partitioned into subsets where separate identical processes are created to perform
the desired work on each subset of data. The key word is “identical”. Each process is an
exact duplicate of every other process. The only difference is that each process will work
on different data. The classic example is an iterative loop, where each iteration accesses a
different set of data. Almost all of the routines in the Parallel Programming Library seem to
be geared for this technique. Multitasking refers to the idea of “Functional Partitioning”.
In this method, functions are separated instead of data. This usually requires a more
flexible and dynamic approach. The fork routine is used for this type of partitioning. It is
a misconception to think that the Parallel Programming Library routines can handle every
type of multiprocessing application. The new DYNIX parallel programming routines were

never meant to replace the basic fork, but to extend its capabilities in certain contexts.

A R A G O S 0 St RS

9-0%.9" W%,

> TN

2

5 =

e 8 Ny

N2 P N o AL

o S

[LW X

Wl Wy A SR Ve S ha Sl N N A N TN AT N T e Y A AT T T W S TR AT G T
L A W N W O S0 g% g A oA

ANgCavy d¥agta’

~ava® S0ag Sag ial vap wal ead o,

The use of shared memory is also often misunderstood. In the C programming language,
a global variable is not shared between separate processes (however, in Pascal, global
variables are shared). Any variable or structure which is to be shared between processes
must be declared as shared. The key word shared must proceed the type of a variable
within its declaration. You must link a program with the Parallel Programming Library
to use shared memory, even if you do not use any routine from the library. Remember,
it is your responsibility to provide for any synchronization needed between processes to

ensure correctness.
3.1 Fork

The fork creates a new process. The new process’s instructions, user-data, and system-
data segments are almost exact copies of those of the old process. The old process which
issued the fork is called the “parent” and the newly created process is called the child.
The only difference between the two processes is that the child has a unique process id
(PID) and a different parent process id (the PID of the old process). The fork returns an
integer. After the fork, both processes (the parent and the child) receive a return. The
parent process will receive the PID of the newly created child. The child will receive a 0.

Example 1 shows a process which issues a fork to create a child. Both processes then
print out what was returned by the fork. The output of the example follows and shows
two numbers returned by the fork, 12538 and 0. 12538 is the PID of the child and was

returned to the parent. O was returned to the child.

Notice the system call setbuf. This command sets the size of the buffer which writes to
a file. I used the command to set the buffer size of the standard output file (terminal) to
zero (NULL). When a parent creates a child, the child gets a copy of the parent’s open file
descriptors. This means that each can overwrite what the other has written by writing to
the same buffer. The buffer size is set to zero, so that what ever is written by parent or
child immediately goes to the terminal. To fully ensure that no output is lost, one must
perform I/0O within mutually exclusive areas called critical regions. Mutual exclusion will

be demonstrated later.

10

L M 2 R i L ot C} . P Lt Ol o L) -

X372

s

A

J{‘,-ﬁ. S

b 4
ol

-
-9 At =%

<

»

‘W i~
s

“ ¢
(Y

< ” -Sr\(S("‘ { .

_‘I-
ne

e ..
- - -

-

PN gy T v -
AR ARAEIL TS 2k h b

....
e)

.
x ‘i 'l‘.l

4

«

L
.- .l .'

s

-
Sl

EPR WRE RN R TR O AR SR R R AR T W Ve Mo Wi M N AT KA LN RS RO AR RN R

2580, 8a B4 8% B'x 44

X .
; .
N
Josssesssrnssses/ .
/+ Example 1 s/ >
Jesssnsasnsssrns/ ;
K #include <stdio.h> hd ~
. -
/* This program demonstrates the Fork system call. Fork will create g s/
/* new process known as the child process. The porent process is the o/
/* process which executed the Fork. The child process is olmost s/ J
i /* exact copy of the parent. Both the child aond parent process will o/ c
/* resume execution after the Fork. Fork will return the volue of @ to s/ ;
; /* the child process and will return the Process ID (pid) of the child s/ Lo’
B /* to the Parent process. In this example both processes print out the s/ N
K /* value returned from the Fork. s/ Y
main () Q
{
int pid; &
setbuf (stdout, NULL): -
printf ("Start of Test\n"); F
pid = fork (). !
printf (“pid returned is: %d\n", pid); 'T
¥
i g .c
) e
: &
. g
} o
* 9
Start of Test P
pid returned is: 12538 ;
pid returned is: @
H"
h
B :}
,
A
L
, "3
D Ty
1
/ N
N
b3
>
-
"
¢
\ :f
! -~
3 -
~P
‘I
B Ly
1 <)
t
Ad
1
1w

)

X » - L LT LML) I I T o I I A N T
'!‘n‘.‘s.u‘. RO Al -u WRTLh g, GRS J GGG X ""-"'* vy

224

Py

A A A A R

RN

i
'
g
[+

- 0 e - -

P WA

d

-

b 40 Y20 Vel ol Yad Uay Wad Vot Yad dad 48 tad Y ued ¢ hatat, Sy S VAR Hah Sal Uad bal Vol Sk 2at il Sal & . -9, - Qo e ‘el ol A 0

3.2 Getpid

Any process may find out its PID by issuing a call to getpid. The following example
shows how to issue the call to getpid and print a process’s PID. In example 2, the parent
first calls getpid and prints out its PID. The parent then issues a fork. Notice that the
fork is within an if statement. If the fork returns a zero, getpid is used to obtain and
print the PID. This is the normal method of designating the child and the section of code
the child is to execute. The parent, who receives a nonzero response, skips that section of

code and terminates.

12

-

vy ¥ v 5 A

¥ » a s e~ . P
oL

A v e

-

A N N T T N A P g N AT AT AT RS A R R AT

TSR TS ST L 7K TSR T RO N RO PO R MO R ™

#include <stdio.h>

/e
VA
/*
/
/e

process’'s 1D.
new process.
print the
PID.

main ()

¢

int pid;

pid =
printf

pid =
printf

is
is

Parent Process
Child Process

R s e N v s

This prograom will

result.

7N

/..“.......‘.O‘/
/* Example 2 »/

Jesrosssnsnnnses/

use
After

getpid ();
("Porent Process

if (fork () == @) 1}

getpid ();
("Child Process

is Zd\n",

10844
10845

AN N R g

the system call
printing the PID,
The new child process will
Each process created under

is Zd\n",

o/
s/
v/
o/ !
e/ A

"getpid” to find out the
the process will Fork a
atso ccll "getpid" and
UNIX has o unique

T

r?¢*’

pid);

J &
FEE

pid);

AP
g -

A Lt

Loty

"ﬁ;v?"bﬁf

PR
A ']
A

3
4

P

“’.—

v .
L)

VLT

e

R A S A A AN AR R R

B UL WYY M PR) Y1.0N,070,0" Ve’ NS I A A A AT Y ol Saf ¢k aal e =ap el gl TAYL RS AE. RN Rl SuE. - . e 8% 0% 4'0.0'0.0 8 ad el nA* oy

‘ e
: 3
‘ 3.3 Exit and Wait |
f
) The exit routine terminates a process. A process which performs an exit may pass (as)
® a parameter) a short integer value back to the parent which acts as a termination code. A
:. The value zero is usually returned to the parent to indicate a normal termination. If the '.::
process finds an error, it may wish to exit with a termination code (such as -1) which K4
indicates to the parent process that an error occurred. One may fork a child process to 5
execute some segment of code embedded within the program. To accomplish this task, g
fork the child and test for a return of zero as done previously. The child should execute :
the section of code within the if statement. Place an exit statement at the end of the if ..
statement to terminate the child process. Otherwise, the child process will continue past ;
the if statement and execute code which the parent is executing. ?g‘
The wait routine is used by a parent process to wait until a child process has terminated. ::
The wait returns the PID of the child which terminated. It also returns the termination -
code of the child process (normally passed back by the child using exit). This code is :
placed in an integer variable which is passed to the wait routine in a parameter. If a hde
process issues a call to wait and has no children processes executing, wait immediately :
returns a -1 as the PID. A parent process can not wait for a specific child to terminate. If :
any child terminates, the wait is satisfied. If the parent knows the PID of the child, it can -
test the PID returned by wait to find out which child terminated. The parent may have to ‘
wait through several terminations to find a specific termination. There is no requirement X
that a parent must wait for a child process, but the parent may choose to wait if it is l
dependent on some action taken by the child process. In this capacity, the wait acts as a e
synchronization mechanism. N
A}
Example 3 uses both exit and wait. status is used to hold the returned termination code o
of a terminating process. This aspect of wait and the Union statement is discussed in the y
next example. This program also demonstrates the capability to nest fork calls. In this N
program, the parent process gets and prints its PID (by use of getpid). It then forks a 2
child process, prints the message “Parent Running”, and issues a wait for the child. The :f
child process also gets and prints its PID; forks a child process (the grandchild); prints 5
the message “Child Running”; and waits for the grandchild. The graudciiid process gets :-
and prints its PID, prints the message that it is terminating, and then terminates. After)

the grandchild terminates, the child prints the PID of the grandchild that terminated. It

14

"
1)

N

ﬁ'ﬁ ’E.'-:Vl'.m

RS TR

then prints a message that it is terminating and does so. The parent process then prints

) the PID of the child that terminated and terminates.

.

:: This program has two interesting points. The first is the order of the output. Notice
“t

:: that the parent is still executing as the child executes and the child is still executing

as the grandchild executes (concurrency). However, the child blocks execution until the

grandchild has terminated and the parent blocks un'’l the child has terminated. The

K second point is that the termination of a process is only seer by its immediate parent. In
" - . .

\ other words, the parent process did not notice the creation, execution, or termination of
:: the grandchild process.

K

{‘

2

I

Al

.

wle ® & &

! 15

V' P ™ " " €y Wy P PAYAT ¥A A Ta " AN TRAR" N A" « [SR W R I ILI Sall Y PR L R N SN . ars
"' (AN 2y, LN "\-‘-,n \ At AAQ 3 L) ,. X .\ ..(- -- .‘ .‘ - N \' \'-\ A ., N . N

- -

o)

Jesssrssnsrsnnss/
/+ Example 3 «/

J/eorssevesnssnss/

finclude <stdio.h>
#include <sys/wait.h>

The main process will print
chitld process prints its PID
hild process prints its PID
d process print o message to
ently with their children.
he Child and the Child
When o process terminates with

stotus is returned to the
| also returns the PID of the
example the Parent prints the

id);
/* Fork the Child «/

d);
/* Fork the Grandchild

s %d\n", pid);

/* Grandchitd Terminates */

*/
s/
o/
./
*/
*/
+/
s/
*/
*/
4

4

/* Wait for the Grandchilid

n", pid);

/* Child Terminotes s/

/* Wait for the child s/
).

/* This prograom creates three processes.
/e its PID and Fork a new process. The
/* and Forks a new process. The Grandc
/e aond Exits. Both the porent and chil
/» show that they are executing concurr
/e The Parent then performs o Wait on t
/e performs o Wait on the Grandchild.
/e an Exit system coll, the termination
/» parent process. The Wait system cal
/e terminating child process. In this
/* PID of the terminating child process.
main ()
{
union wait status;
int pid;
setbuf (stdout, NULL);
pid = getpid ();
printf ("Parent Process is %d\n", p
if (fork () == @) |
pid = getpid ();
printf ("Child Process %d\n", pi
if (fork () == @)
pid = getpid ();
printf (“Grondchild Process i
printf ("Grandchild Exits\n");
exit (9);
}
printf ("“Child Running\n");
pid = wait (&status);
printf ("Grondchild %d Finished\
printf ("Child Exits\n");
exit (0);
printf ("Parent Running\n");
pid = wait (&status);
printf ("Child %d Finished \n", pid
printf ("Parent Exits\n"):
}

Parent Process is 10857
Porent Running

Child Process 10858

Child Running

Grandchild Process is 10859
Grandchiild Exits

Graondchild 10859 Finished
Chitd Exits

Child 10858 Finished

Porent Exits

. - PR Nl Y. o g » » -
VAT l~_l ., 4. ~ ™ *\‘ \ .‘. N

NI

\'\. -, 4'\-%1'.(\1\{‘.- L% -‘ { LA . A"
»

\'!-

P A PR |
. L.

| S Scow owrs g

b o

R F P

<y
4

¢ Pl oL

’. - v

-

\ o i "

R T SN S A T W S T T Y T L e

3.3.1 Detecting Errors using Exit and Wait

How does one use the wait routine to catch a bad termination code? Study example

4. In this example a process forks a child process and immediately waits for that child

to terminate. The child process gets and prints its PID and then terminates with an

R R L

abnormal termination code of 3 (remember that 0 is a normal termination). After the

R L X

child terminates, the parent tests the status for normal termination. The variable status

is used to hold the termination code returned by wait.

There are two ways for a process to terminate. It can call exit or it can receive a fatal signal

from the system. Although status is just an integer, its bits indicate how it terminated.

4 If the rightmost byte of status is zero, then the byte to its left is the child’s argument to e

o exit. If both are zero, the child terminated normally. If the rightmost byte is nonzero,

R the first seven bits are the signal number that terminated the child. If the eighth bit is 1, |

a core dump was taken. The bits of status are counted right to left (15, 14, ... 2, 1, 0).

In this example, status is declared as type union wait. This union has a structure of ;

) the three bit fields just described. This allows one to check and print the different codes

without performing shift operations. In order to use this union declaration, include the .

e header file sys/wait.h. This header file defines the union of status. In the example, the

! parent checks status.w_status. This is declared in union wait as the entire integer. If it is

i zero, the child terminated normally. If it is not zero, the parent prints a message that the

' child terminated abnormally and then checks status.w_termsig. If this is zero, the child

placed the termination code in exit and the parent prints this code. If it is nonzero, the

y child terminated from a fatal signal and the parent prints the signal number. The parent !

X will also check for a core dump. Notice in the output that the termination code of 3 was S

printed. The man command can be used to reference the DYNIX Programmers Reference by

Manual. The command “man 2 wait” can be used to gather more information on the wait

routine.

P

i e By I B ORPS)

\‘.Tl"

-

? '-“v - L85, '- AN *‘-" oo

5

AR

A4 I"‘ l“.‘ *

O M

.1“-1“."--'7‘1".‘4" ‘)‘f‘f‘.“ -y u*- =N, p‘_‘-*-“-’,',‘- -f'{'
B Saile ¥ Y W% ol ‘v

e

- un

- e e~

; v
.I...I._'q .

Y NN L A AT A P, VT A INTNE 0l 0 P

i)

/..“.“'..‘..‘./
/+ Example 4 s/

Jesssssesssssnsn/

#include <stdio.h>
finclude <sys/wait.h>

*/

o/

*/

/* This program iilustrates the use of the Status value returned »/
/* by the Wait system call. Once ogain, you must include the o/
/* header file <sys/wait.h>. The Stotus returned is actually an s/
/* unsigned short integer. The rightmost 8 bits are set if the =/
/* operating system terminated the process. Bits 8 - 6 give the »/
/. terminating code. Bit 7 is set if o core dump was taken. 1t o/
/* the rightmost byte is @ and the process still terminated o/
/* abnormally, then bits 8 — 15 contoin the stotus code returned »/
/* by the process through the Exit system call. In this example o/
/e the child process returns o value of 3. This allows a user o/
/* to set up his own termination codes. The Bits of the Stotus s/
/*» are counted right to teft (15, 14 ... 3, 2, 1, 0). ./
main ()
t
union woit stotus; /¢ bit field set up by <sys/wait.h> «/
int pid;
setbuf (stdout, NULL);
pid = getpid ();
printf ("Parent Process is %d\n", pid).
if (fork () == @) | /+ Fork the Chitd s/
pid = getpid ():
printf ("Child Process %d\n", pid);
exit (3): /+* Child Terminates Abnormally
{
pid = wait (&stotus); /* Wait for the child s/
if (stotus.w_stotus != @) | /* Abnormal Termination?
printf ("\n\nProcess %d hod Abnormal Termination\n”, pid);
if (! staotus.w_termsig) /+ Terminoted by System?
printf ("Exit Code: Z%u\n", stotus.w_retcode);
else §
printf (“"Terminoted by System Error: %u\n", stotus.w_termsig);
if (<tatus.w_coredump) /* Core Dump Token? +/
printf (“Core Dump Taken\n");
}
}

Porent Process is 10874
Child Process 10875

Process 18875 had Abnormol Termination
Exit Code: 3

N e

Pha M0 M L ML Y N

RO

fl'fff'"‘ -~

L o

AT

A

CALOC L T LT AT Ny G 9

RIP AR Sty

.
. l‘

s

EQFLEL

KA

"’ Tty

Mg WAL AL ® e G S N

Ul W .

-

o’
R A S N N

3.3.2 Detecting Errors on Forks

When a process forks another process. it would be nice to know whether the fork was
successful. Also, how many processes can one user have executing at one time and how
does one detect an error? Example 5 shows how many forks can be performed successfully
and how to catch an unsuccessful fork. In this program, the parent process will print its
PID and then start forking new children. Each child goes into an infinite loop. This is
done to ensure that no child terminates while the parent is still creating new children. The
parent keeps count of the number of children created and prints each child’s PID. When
a fork does not succeed, it returns a -1 instead of a new PID. When the parent receives a
-1 from a fork, it breaks out of the loop. The next problem is to determine why the fork

was unsuccessful.

Notice the two external variables sys_nerr and sys_errlist. sys_errlist is an array of error
messages kept by the system. sys_nerr is the highest index into the array sys_errlist. The
external variable errno is declared in the header file errno.A and will hold the error message
number of the unsuccessful fork. In this example, when the parent process finds a bad
fork, 1t prints the number of children created. It then checks errno for an error code. If an
error code is found and it is less than sys_nerr, errno is used as an index into sys_errlist to
print the error message. The output of this example shows that a user is able to create 25
processes (including the parent). The command kill at the bottom of the program allows
the parent to terminate all related processes. The kill will also terminate the parent
process. The command “man 3 sys_nerr” can be used to read about system error messages

and the command “man 2 intro” can be used to list every possible error message.

19

AN

.

W,
o

e M W W W T T ST Y T WY, T M VN W N M R N -
e o N N M T e N e TSR)

R e ki

Pl e

OOV AW YO AEasE Rt Rt G LSt AR AL AR IR LN P A R AR LA ARG A A AR St Ak A A el g Sho AA) to Jta AP0 B b) A e Ak de® st P a " a

Jesssessesasnses/
/% Example 5 ¢/
Jessssasecnnnrena/
#include <stdio.h>
#include <errno.h>

/* This program demonstrotes the use of the externol variables s/
/* errno, sys_nerr,sys_errlist to capture an unsuccessful Fork. e/
/* In this program, aos many processes aore creoted os the system s/

/* will atlow one user to cre~te. When the system does not o/
/+ aitlow any more Forks by o user, it returns o -1 in place of s/
/* the PID and puts the error code into the global variable o/
/* errno. errno can be used as an index into the array 4
/* sys_errlist. This array holds error messages for each error o/
/* produced by the system. This program counts the number of ./

e processes created and then prints the error message returned o/
/* from the bad Fork. Eacch Child process goes into an infinite s/

/* loop to ensure that no-one terminates whiie | am testing for =/
/*+ the error condition. The system cal) to Kill is used to o/
/% terminate all children processes. The © soys to signal all s/
/+ processes in my user’'s goup (incltuding myself), the 9 is the o/
/* terminote signal. o/
moin ()

!

extern int sys_nerr;
extern char ssys_errlist[];
int count, ppid, pid;

“ela
v

« X 0.
PRE R)

setbuf (stdout, NULL);

count = 9;

ppid = getpid ()

printf ("Parent Process is %d\n", ppid);

printf ("\n\nCount Process\n"):
for (;;) H
pid = fork ():
if (pid == @) /* child spins s/
for (::) § 1}
if (pid > @) § /* Increment count and s/
count ++; /* print PID of child o/
printf (" %d %d\n", count, pid);
{
eftse f (prd < @) /* Error on Fork s/
break,
{
printf ("\nToto! Processes Creoted: Z%da\n", count);

printf ("\nError on Fork\n");
it ((errno > @) && (errno < sys_nerr))
printf (“%s \n", sys_errlist[errno]):
kill (@,9); /* kill the children ¢/

’
.
.
‘-J-.',--"-I'-.f_t.l.-‘r.-..-.q'-'-_l'.- ST S S S B R R I S XV Y B LS R Ay Mgt Y g W --'.
N T N T o e A T P U R R A Y A Qi R

e T T T R g

v Tt

A 4 ol w¥aa"d AR MYy . LA LY v e e e T e TN e T T e Sl RA Al A b
4
K
[{
»
)l
D
y
&)
Porent Process is 10887
]
Count Process
1 10888
. 2 10889
' 3 10890
\ 4 10891
! 5 10892
() 10893
7 10894
8 10895
9 10886
10 10897
11 10898
by 12 10899
' 13 19800
. 14 10901
15 10902
‘ 16 10903
“' 17 10904
" 18 10905
A 16 10906
29 10907
o 21 10908
N 22 10909
. 23 10910
« 24 10911
A]
" Total Processes Creoted: 24
. Error on Fork
No more processes
!
»,
h
¥
L)

-

! L
-
L ".
. R
h
X
b om
. '-.
1 -
.
Ll ’-
g
y .
L]
d
)
.
; 1
]
il .
4] A
.
v
{l
rd
L A A" T o T T R T I N A A AR R A
WA A AN Lo lp Lt L Ly ARSI IR T

AT -

B TR KO SV T VR T LR TV KT

. 3.4 M _Fork and M_Kill Procs

The m_fork routine creates a number of child processes and assigns the same subprogram
to each of them. The number of children created will be the number of processors available
divided by two. Each of the child processes will execute the subprogram passed to m_fork
as a parameter. After a child has executed the subprogram, it spins waiting for the parent
to assign it another subprogram via a new m_fork. The m_kill_procs routine terminates

! all child processes which were previously created by an m_fork.

In exampie 6, the main procedure creates five child processes (the system had 10 avail-
able processors). Each child executes the function “sayhi”. After each child process has
executed the function, the parent terminates them with a call to m_kill_procs. In the
function “sayhi”, each child process prints the message “Hello from process PID”. Notice

that the example includes the two header files parallel/microtask.h and parallel/parallel.h.

Remember that each child process has a copy of its parent’s open file descriptors and can
thus overwrite another’s output. To ensure that no output is lost, a critical region is used.
Only one process can enter the critical region at a time. This is accomplished by using
the m_lock and fHush routines. The m_lock routine sets up a hardware lock which only
one process at a time can access. Once a process obtains the lock, it can enter its critical
region. If it does not obtain the lock, it spins and continues to try to access the lock.
) A process which has access to the lock releases it by calling the routine m_unlock. The
' routine fHush is used to flush the output buffer so that no process will overwrite any

previous output. m_lock is used at this time only to print output. It is discussed in more

detail later.

22

e

\
~
O W S A ey e P o Sl Ol T R N I L AP N A N A N e S - - - L v - -* -\
Do, A AN AN AL A N A AT N AT T TN T S T NI L ’\"\\"-.\ AN A

/*ssessssssnraees/
/* Exampie 6 o/

[fosssenssenssons/

#include <stdio.h>
#include <paraiiel/microtask.h>
#include <porallel/parallel.h>

/* This program creats a number of child processes, each executing
/* the procedure "Sayhi”. The procedure "sayhi" prints out the
/*» message "Hello from Process PID.
/* M_fork will create N processes where N is (the number of
/* ovailable processors) / 2. The m_kill_procs system caoll will
/* terminate any processes creoted by m_fork.
/* The use of m_lock and m_unlock are used here to ensure mutual
/e exclusion when each process is printing. Each process shares the
/e same file pointer to stdout, so one process may overwrite another
/e process’'s output. The ffiush routine is used to empty the buffer
/ to stdout before onother process can overwrite the buffer.
sayhi ()
int pid;
m_lock ();
pid = getpid ()
printf ("Hello from Process %d\n", pid);
fflush (stdout);
m_uniock ();
}
main ()
m_fork (sayhi);
m_kili_procs ()
printf ("Program Over\n");
{

Hello from Process 190944
Hello from Process 10948
Hello from Process 10947
Hello from Process 10945
Hello from Process 10946
Progrom Over

[}
. %0, AN

I S ‘*‘\}'\"\..\-."!,"i$'. ‘*v-*\}\ﬁ" LR
A 25 VS WO * - W AWy St O L0

Che LS L0 LD

./
*/
*/
</
+/
o/
*/
*/
+/
*/
+/

--"v » ‘*"‘-".- ‘*". ‘ n".- -*-*u

L AL

ey X v

Lo ot g 4
- N

S e Ay

Rl e o

<4

I's f"'(&l -

LN

ST
[

LSS Iad ({{-‘frrq-

XX R NKEN R AR R N PRI POV NN R IV AW TR XY

3.4.1 Fork versus M _Fork

It is a misconception to think that the call to m_kill_procs sets up a barrier that the
parent will not pass until each child has terminated. Example 7 is exactly as the previous
one except for a print statement between the calls to m_fork and m_kill_procs. Actually,
the m_fork itself sets up a barrier. After an m_fork has been issued, the parent will not
continue until each child has executed the designated function. In the output, we see that
the message “Program Over” is not printed until after each child has printed the message
“Hello from process PID”. This is a major difference between fork and m_fork. The
fork routine allows the parent to continue executing while the children execute. In fact,
with m_fork the parent does execute while the children are executing, but as one of the
children! In the previous examples, five new processes were not created. Four processes
were created and the fifth execution of “sayhi” was performed by the parent. This will
become important when the m_single and m_multi routines are discussed. To show that

the parent process actually performs as a child when using m_fork, notice that the parent’s
PID, 10977, is also the PID of one of the child processes.

- ! @ gt A M - \
W ‘\'t‘!"."| n..'l LY r ..a‘.'y, "‘.'. '. 3 ... X V nn o

R R R T R R R ooy gt e Ve gt 8ty 40n ga gt Y ATa At e atatate A Vo et -
[rressasssnssanes/
/* Example 7 o/
/Q‘..OOO‘O‘Q"../
#include <stdio.h>

#inciude <parallel/microtask.h>
#include <parallel/paraiiel.h>

/* This program creates o number
/* messoge "Hello".
/* exclusion while each process
/* notice that a call to printf

/* processes are terminated by m_kill_procs.

of processes which print out the

/* difference between fork and m_fork.

/» the parent process becomes one of

/* prints one of the "Hello’'s".

/+ procedure.

m_lock and m_uniock are used to ensure mutugl
is printing.
is made before the creoted child

In this program,

This shows a bgasic
When aon m_fork is made,

the chiid processes and

The parent process does not
/* continue executing after the m_fork co!ll until oll the created
/* child processes have compieted execution of the m_forked

Also notice that one of

/s the same PID as the parent process.

the children processes has

sayhi ()
int pid; r
m_lock ()
pid = getpid ():
printf ("Hello from Process %d\n", pid);

fflush (stdout);
m_unlock ();

}
main ()
int pid;
pid = getpid ();
printf (“Parent's PID is Z%d\n"
fflush (stdout);
m_fork (sayhi);
printf ("Program Over\n");
m_kill_procs ():
}

pid);

7
*/
+/
4
+/
*/
v/
*/
</
*/
\
\74

Parent's PID is 10977

Hello from Process 10977
Hello from Process 10981
Hello from Process 10978
Heilo from Process 10979
Hello from Process 10980

Program Over

LA AT NN

L4

R e

e

'yf

I O

o3
5

-~ Y
L ot 4
«

b3

A O R R A T R O K Y T R N S R o T o O O O R T R R R R O AV IR T Y Y A YOO P A ™

Y
’i
L)
3 |
Lot
S
3 |
" 3.5 M _Set_Procs and CPUS _Online J
"
. When a m_fork is executed, the number of processes which execute the designated subpro-
:: gram is the number of available processors divided by two. In fact, this is only the default)
U g
:: value and the programmer has more control than just using this default. The cpus_online v
‘: routine returns the number of available processors on the system. The m_set_procs rou- v
\ tine declares the number of processes to execute a designated subprogram in parallel on '
":c subsequent calls to m_fork. The total number of processes which can be running in parallel 3
;' using the m_fork routine is the number of processors online minus one. If a programmer ;
3 N . s 3
;v} tries a higher number, the default is used. X
E‘, In example 8, the main process finds out the number of processors online using cpus_online '
':, and prints the value. It then uses m_set_procs to set the number of processes which can \
Kl oy s \
:i execute in parallel to this value minus one. Again, the function “sayhi” is executed by '
calling m_fork. The output shows that ten processors were online at the time and that .
5 “sayhi” was executed nine times.
v
{ t
1 \
(X]
o
» d
o 1
L
C »

.‘l"]!,' ‘*'. ...‘ .‘\'I‘\. ‘ V'l'. '-F ‘.\ O ’-' "y -d"‘ . -f 'J'(CAC \..-_-‘.‘- RN d‘_'.'_""_f"‘f..d' f\'\.r\lr'\\r'-'\".'\

Yol @, S/ s M Vol Vol dud Vol ¥ \‘ Yop @ 0’ X E AR K] W L 'il - (UR) o
[essesesvrnvsans/
/* Exaomple 8 s/
Jrssssssnnrscenn/
#include <stdio.h>
#include <paraliel/microtask.h>
#inciude <parclliel/parallel.h>
/+* This program is identical to the previous programs except ./
/e it sets the number of processes to create. The cpus_online */
/e system ca!l! returns the number of available CPUs. The v/
/¢ m_set_procs system call will set the number of processes to s/
/* create on each m_fork. In this example, one less than the =/
/e number of CPUs available are created. v/
sayhi ()
{
int pid;
m_lock ();
pid = getpid ();
printf ("Hello from Process %d\n", pid);
fflush (stdout);
m_uniock ();
}
main ()
int num_cpus;
num_cpus = cpus_online ();
printf ("Number of Available CPUs is Z%d\n", num_cpus);
fflush (stdout);
m_set_procs (num_cpus ~ 1);
m_fork (sayhi);
m_kill_procs ();
printf ("Program Over\n");
t
Number of Available CPUs is 10
Hello from Process 11001
Hello from Process 11007
Hello from Process 11002
Hello from Process 11004
Hello from Process 11005
Hello from Process 11008
Hello from Process 11003
Hello from Process 11006
Hello from Process 11009
Program Over
A A AT N NN

- - Ld

N

Ly N

y

2"

Sl T

]

¥’

<{»'ﬂ- [T \41,\,?'-

" e
LLLd A g

‘= AP I WAL S B L L R -.?

b4t

PR LA S
als '

ARRIERAA AR

W NN W U WL L W W W SR K N A R R PN A MR AR AN M N, v 3% Ve 4% g% st (R AN X g el

3.6 M _Get_Myid 2.

A W - — - —
-

Processes created by a call to m_fork also have a version of getpid. The m_get_myid
routine returns the PID of the calling process. The PIDs are not the same PIDs that are
found using the getpid routine. When N processes are created using m_fork to execute
a subprogram, the PIDs range from 0,1,2 ... N-1. The parent process (which also executes
the subprogram) has the PID of 0. The fact that these PIDs are not always unique between
different users implies that they are not the real PIDs seen by the system kernel, but PIDs

3

used by some executive module which oversees the execution of m_fork and the other ;

microtasking routines. The PIDs become quite useful when partitioning a program by the Q)

iterations of a loop. 5

v,

&

Example 9 shows a process which executes the function “getpid” three times. Each process 1;

will get their PID using the m_get_myid routine and print its value. Each process also)
gets their PID using getpid. Notice the output shows the PIDs from m_get_myid to run

from 0 to 2. Notice that the PIDs from getpid are different from those using m_get_myid. N

Also, the PID of the parent process matches the getpid PID (12617) of the process with y

Pat

the m_get_myid PID of 0. X

Mt

{

&

'

)

A

e "5

TS ST

28 \

KA XTSI FEF AW

o
Y ‘-"

A R A S

R R R R R O L T 0 U B R g R 0 B 00 Mol B Sl et Vad Yk a0 ol Sab 2l Oad 6af o) bay ¢ VAN R Y O I O TR S e s §9.0% 8", Y

[

.(
.!
.0
. Q
3 "
’. ~
)
¥ !
! i
/rrsssssrrsnsans/
/+ Exomple 9 o/ :
J/rssrsxsssseansa/
s #include <ztdio.h> -
! finclude <parallel/microtask.h> y
p #include <paraliei/paraliel.h> y
; #detfine NPROCS 3 |
: /* This program creates three child processes. Eoch process will s/ \
/* get its process id by using the system call m_get_myid. Each s/
4 /* process prints out its PID. The m_lock and m_unlock is used to e/
d /* ensure mutual exclusion for printing. The number of processes s+, 3
/* created by the system call m_set_procs. When o m_fork is o/ 4
b /* executed, NPROCS copies of the procedure "getid" are executed. s/ :
y /* Actually, only NPROCS - 1 new processes are created. The «/ .
/* parent process will act as one of the new processes and execute #/ 2
/+ one copy of "getid". The porent process will have the PID of O s/ 24
. /* ond the other processes will have PIDs of 1,2,3, ... NPROCS-1. +/
\ /* Each child process will also get its PID using the getpid o/ K
' /e routine. Notice that the two are different. ./ 3t
‘ .
y getid () y
{ r "
int pidl, pid2;
pidl = m_get_myid (); /* Get my process ID s/ N
s pid2 = getpid (); v
m_lock (); N
printf (“My process ID using m_get_myid is: Zd\n", pidl); W8
printf (“My process ID using getpid is: %d\n", pid2); s,
fflush (stdout);
o m_uniock ();
; »,
w L]
main () A
s "
9 int pid; p
. pid = getpid ();
| printf ("Porent process is %d\n\n", pid); #
v fflush (stdout);)
| m_set_procs (NPROCS); /* Set the number of processes to NPROCS &/
h m_fork (getid);
P m_kill_procs () /+* Terminate all processes except the parent s/
D ; '
"
‘.
A -
; Y
; :
[t
Parent process is 12617 o
) .
My process ID using m_get_myid is: @ ?
V] My process ID using getpid is: 12617 "o
My process ID using m_get_myid is: 1 :
My process [D using getpid is: 12618
My process ID using m_get_myid is: 2
Y My process ID using getpid is: 12619 C:
v‘)
}'
’
=
\J » N
\ .
4 0 (‘ ‘. 'M" ‘. ‘.l Ly ® ' w) '..7 RS . I \K.v‘-'(“.“'.‘:" AI""" & n* - '* 'f"'f 4 "(,f'.NlVf\fN"" ~1$(~ﬂ '..-'.‘,,&r“ -‘f
0 WY, AP, YL Bl 2 Boaf il a0 K o

:v‘\o'i O M AT N SUNE W N P W s N WS WG e e VW W P W R S R & R I Y S a0 Ra 60 At 0% Ny B8
' g
|
U |
¢ %
d
3.7 M_Lock and M_Unlock g
) .;
The routines m_lock and m_unlock have already been shown to ensure mutual exclusion.
x: The mutual exclusion is not just for printing output, but for any section of code which 3
': could produce incorrect results if executed concurrently. The m_lock routine creates and ;
\ NCTTIRT g
\ initializes a hardware lock. This same lock is used in every copy of the subprogram being
executed. When a process calls m_lock, a type of test-and-set operation is performed on
v the lock. If no-one is using the lock, the calling process obtains the lock and may proceed. :
y If the lock is in use, the calling process spins, trying to obtain the lock. A process releases A
(r the lock by calling m_unlock. y
ol
N Example 10 illustrates the use of m_lock and m_unlock. This program increments a 3
j byt
“ counter which is shared between three processes. Remember the counter must be dedlared »
1 p .
:: as shared for it to be placed in shared memory and accessible by each process. The main :
[\ . ; .
‘ process creates three copies of the subprogram “counts” to be executed in parallel. Each
" . . . B
X process will attempt to increment the counter three times. The processes use m_lock to .
3
:: ensure that only one process can increment the counter at a time. A process will print ‘
)
:: its PID and the value of the counter after increasing the counter. The output shows the)
. ¥
counter was incremented nine times. Notice the increments of the counter were printed in ;
Y order. This demonstrates the mutual exclusion. However, notice that the order a specific Y
! process obtained the lock, incremented and printed the counter, and released the lock was
> arbitrary.]
A
U {
: (
D
! L]
1 .
4
A "
¥ .
0)
1. -
)0
'
Y
.
'
b ¥ 2

\‘. ;
[l

LU Y ym - m R T T U . e T " m T m "t " n k" w" M At et e mama"m "~ n®)
Wy LasAl ALK -\-I-.I" ‘.lql‘-l.' l'- > 'Q ’ p{'“n‘ f’ t. ,.A 'q. J“*'.(\.. - -f\\(' , " Fae "_-f "‘- . - {\‘- ’ ".- o

P

- .-

¢

B e L N T W e G T A N Tt N T T T N A T T T T N AT e AR TN S

N vy A e

02 0" 0 AR NI SRS e C AT g A TRt RaTa Bam Liab o fuiolnt o T haW ot at Dy és S LVAS

[esesssesssnnsess/
/* Example 10 s/
Jessssressnsssven/

#include <stdio.h>

#inciude <poraliel/microtask.h>

§include <paraliel/parailei.h>

§define NPROCS 3

shared int count;

/e This program illustrates the use of m_Jlock. The program counts s/
/* by increasing the vaolue of a variable in poraliiel. The program s/
/ maintains mutual exclusion with a coll to m_lock. Each copy of s/
/* the procedure increments the shared variable "count” s/
/» concurrently, and therefore, mutual exclusion is required. ./
counts ()
¢
int me, i,
me = m_get_myid (); /* Get my PID =/
for (i=0; i < NPROCS; i++) |
m_lock ():
count += 1;
printf ("process %d says count is Z%d\n", me, count);
fflush (stdout);
m_unlock ()
}
}
main ()
{
count = @;
m_set_procs (NPROCS); /*» Create NPROCS processes s/
m_fork (counts);
m_kill_procs (); /* Terminate all Processes except Parent

printf ("counter over\n");

says count
says count
process says count
process says count

process ©
2
1
(]
process 2 says count
1
2
0
1
o

process

process says count
process says count
process says count
process says count
counter ver

(7307 7 S I 7 N T R I]
W WO H N =

A S

N\

"

AE W AN A e
g 4 .

LA O

e T 2R

P et

LA d R P R

n_gin 8 4
- P

)

i e e pad 0 I R e R R RV Y T pal s’ &Y 1 A g 3) * fav gav Qe fak S .. gavoge- o ga- yot

i a n «¥ata Ll Sl AL

3.7.1 The Fairness of Locks

A locking mechanism is called “Fair” if a process eventually enters its critical region af-
ter trying to obtain the lock. The best example might be a queuing semaphore, which
maintains the order of processes trying to obtain the lock in a FIFO fashion. However,
m_lock does not block and queue a process. On the Sequent, a process simply spins in
its processor and repetitively attempts to obtain the lock. This means that if process 1,
2, and 3 each try to obtain a busy lock, there is no way of knowing which process will be

the first to enter its critical region.

Example 11 performs the same counting function as the previous example, however, a
timing routine has been added to test when a process attempts to obtain a lock and
when it actually obtains the lock. The header file sys/time.h must be included to use this
routine. The structures timeval and timezone are used with the gettimeofday routine to
get the desired information. The gettimeofday routine returns a timing counter which is
incremented every 10 milliseconds. In the function “counts”, each process will get its PID
and enter a loop to increment count. In the loop, each process will call gettimeofday
before attempting the call to m_lock. After a process has enter its critical region, it again
calls the gettimeofday routine for the time. The process then enters a second loop which
performs no service except to waste time. This is done to ensure that more than one
process is waiting to enter the critical region. The counter is then incremented and both
the counter and times are printed. The process then releases the lock for another process

to enter its critical region.

The output shows the counter is incremented in correct order. It also shows the time
that each process attempted to enter its critical region and the time it entered the critical
region. Notice that process 0 on count 8, attempted to enter the critical region before
process 1 at count 7, yet process 1 entered the region first. Both had issued a call to
m_lock. It is just by chance that process 1 obtained the lock first. The reason for this is
both timing and hardware. It may be that process 1 noticed the lock was released before
process 0. However, if two processes attempt to obtain the same lock simultaneously, the
process with the lowest priority will wait. If both processes have the same priority, the
process with the lowest processor number will wait. Starvation results when one process
never obtains the lock. On the Balance 8000, starvation will not occur because the priority
of a waiting process is incrcased over time. This is called “Weak Fairness”. The command

“man 2 gettimeofday” can be used to read about this function further.

32

AN AN AR N \'-..'-' -\.' N \.\‘ .. Y '\."-g-.{-.;: (P S T e

YN Y
e

<" < .’.:’: r .l' ﬂ' L J L

ﬁ 'l_

LAl WS
s

Py

~ s
A

o »

2T

O,

A

AT NN NN

T NN -\\v

e
JI‘J‘ ‘I-“"" f

S UCTTUVTRR NN

Joosssensnecnsnss/
/+ Example 11 o/

/too--coo-.to.o-o/

"#include <sys/time.h> ;
A finciude <stdio.h> >
) #inctude <parallei/microtosk.h> ’
K #include <parallel/parailel.h> “
A fdefine NPROCS 3 p
B shared int count; -
by <
L 7,
& /* This program illustrates the use of m_lock. The program counts ¢/ <

1 /e by increasing the value of o variable in parallei. The program s/
4 /* maintoins mutual exclusion with o catl to m_lock. The system’'s ¢/ 5
! /* calls to gettimeofday are to show when the process aottempted o/ .
/* to occess the lock and when the process obtagined the lock. o/
/e Although not conclusive, it would appear that the m_lock coll is s/ .
/* not fair. ./ ™)
§ counts () !
~ a
' struct timeval t, r; /* Timing Variabies o/ L
struct timezone t1, ri;
K int me, i, ., k; X
| k = 0; (
4 me = m_get_myid (); /* Get my PID s/ ;
"
for (i=@; i < NPROCS; i++) /* Increment Count NPROCS times s/
. gettimeofday (&t, &tt): /*+ Time before Access s/
k) m_lock (); R
{ gettimeofdoy (&r, &r1); /* Time after Access s/ ~3
[} .
' for (j = @; j < 10000; j++) /* Woste some time o/ -
k = j + k;
: count += 1; L
] "
. printf (“process %d count is %d :", me, count): N
o printf (" Tried %d %d Obtained %d %d\n", t.tv_sec, X
t.tv_usec, r.tv_sec, r.tv_usec); K
fflush (stdout):
D m_uniock (): .
v »
})
} .
L) 13
5 main () ::
§
count = ©;
r m_set_procs (NPROC® " /+ Create NPROCS processes s/ .
K m_fork (counts),; N
m_kili_procs () /+» Terminate all processes except Parent s/ o
N
printf ("counter over\n").: oy
-
3 { =
» .
. .
. g
x process @ count is 1 Tried 549147970 510000 Obtaoined 549147970 510000 -
‘ process 1 count is 2 Tried 549147970 510000 Obtained 549147970 670000 -
process 2 count is 3 Tried 549147970 510000 Obtained 549147370 820000 d
process @ count is 4 Tried 549147970 670000 Obtained 549147970 970000 g
3 process 1 count is 5 Tried 549147970 820000 Obtained 549147971 110000 ~
. process 2 count is 6 Tried 549147970 970000 Obtaired 549147971 240000 N
process 1 count is 7 Tried 549147971 240000 Obtained 549147971 380000 .
: process © count is 8 Tried 549147971 110000 Obtoined 549147971 520000 =3
N process 2 count is 9 Tried 549147971 380000 Obtoined 549147971 650000 y
counter over A

¥
e D S S S R A

R R

=

3.7.2 Multiple Locks

How many times can m_lock be called within a process? It was thought that it should
only be called once for one critical region. However, this is entirely up to the programmer.
m_lock sets up one lock to be used by the programmer. The programmer is free to use
the lock as he wishes. The following program executes a new “counts” function. The new
function increments two counters. Each process will call m_lock, increment and print a
counter value, and call m_unlock to release the lock. The process then attempts the same

procedure for the other lock. Each process increments each lock three times.

The output shows that each lock was incremented to the value of nine and that the in-
crements were all in order from 1 to 9. However, notice that near the end of the output,
process 0 increments count2 before process 1 has incremented countl. In other words, you
can not predict which counter will be incremented next. This is because the same lock is
used for both critical regions. This is a rather inefficient method since the counters are

independent of each other.

34

AR AR AR W Tl XN $ A T N N N T A A A TN AT A et e R N

c.‘l"\'.'l' .

h)

PRLEOS RS Ty

Ctieis o a s
O AR R

fa®e

e

.
a
»
x>’

R,

|""n < !'

.
()
.’

. ...-,-,--
O A Pl)

T

‘;“- .

A T Tt

L,

I's
b

P A

)T

R AN A A AN AN AT AY ™) R R T o T Lo IR LR R R TR Vo ava-Ata A1 oo L e .

[/ossssssssessrcsne/
/* Exomple 12 o/
/‘Ootuttoon.o.o'./

#include <stdio.h>

#include <parallei/microtast . h>

#include <parailel/paraliel.h>

#define NPROCS 3

shared int counttl, count2;

/* This program illustrates the use of m_lock. In this program
/* m_lock is used twice. M_tock uses just one lock. However,
/e You can have multiple occurrences of m_lock in a routine.
/e In this program two shored counters are incrementec by all
/» copies of "counts”, however, only one lock is used for both
/. count variaobles.

counts ()

int me, i;
me = m_get_myid ()

for (i=8; i < NPROCS; i++)
m_lock ()
couwuntl += 1;
printf ("process %d soys countl is Z%Zd\n", me, countt);

fflush (stdout);
m_uniock ()

m_lock ();
count2 += 1;
printf ("process %d says count2 is %Zd\n", me, count2);

fflush (stdout);
m_unlock ()

t
§
main ()

countl = ©;

count2 = 0;

m_set_procs (NPROCS);

m_fork (counts);

m_kill_procs ();

printf ("counter over\n");
!
process © says countl is 1
process 2 soys countl is 2
process 1 says countl is 3
process ©® says count2 is 1
process 2 says count2 is 2
process 1 says count2 is 3
process © says countl is 4
process 2 says countl! is 5
process 1 says countl is 6
process 2 says count2 is 4
process @ says count2 is S
process 1 says count2 is 6
process @ says countl is 7
procs-s 2 sgys countl is B
process @ says count?2 is 7
process 1 soys countl is 9
process 2 says count?2 is 8
process 1 says count2 is 9
counter over

o/
o/
+/
+/
s/
*/

-

AN S

QP EI L L OCE XIS

4y

." . : o

[
»

SRE O

oy

[PATS Dd
»

KXXNNPNTRSES

D)

)

(A 4

AW AT ALY

e e T Ta o P o

-

,(' P "-‘ S)
BB, X

c S

Yo

Yy Y

Ll

SELL LA

A A5 A

e

p
y
b
h
d
N

0t 0a" 04t s Y,

X T ' ¢ t' ¥ 0ol Qat ¢ ..‘.'l‘ " Ziiaf " 2% Ua* 2% dat $a? ..I‘."“~.~‘~.\.- .. 020 Aa" ‘ .

3.7.3 Omission and Commission Errors

The last example showed how a programmer can use the calls to m_lock and m_unlock
for his own purposes. This can become a very dangerous situation. What would happen
if a process tried to nest calls to m_lock. In other words, tried to obtain a lock it already
had. Would the system allow the process to continue? No! The system does not care
which process has obtained a lock and who will get it next. It only ensures that only one
process at a time can use the lock. The following example is the original “counts” program
minus a call to m_unlock after leaving the critical region. This is an inherent problem
with locks and semaphores. The program deadlocks right away. After the first process
obtains the lock, no other process can continue. The process which first obtained the lock
also waits when it calls m_lock on the second iteration. The output shows that process
0 obtained the lock, incremented and printcd the counter. However, now every process is
waiting for the lock because process 0 forgot to release it. Hit CTRL-C to kill a program
which has deadlocked.

36

GRS

Lo S

o L T N W T W W W T N WL T Tt TR Y Ve Y
» . Nu

Y
YRy

2P U AN o

-

-

'~

-~

FEE

-
d
o

¥ LXS v

-

".I'.

At L A

‘g “u '\fv f‘r}va‘,l{ '/ '..'x-. r‘ff". T f‘

A A

A S i e

Py

M e SN

e
a

v

BN

,_‘.’_l'r‘.-,-,_f,j rd

W
Pl

T gon-pla iy’

. Y PP v
hall) “en el L%k B3 DR S A s e %

- W PRa’ BV

W v
| X
-]
9‘ * ‘
{)
5]
A .
0' [y
: /O“Ott““‘tt.t./ v
E /* Example 13 o/ .
) [eeessssentrannea/
R #§include <stdio.h>)
? #include <parallel/microtask.h>)
Y #include <parailel/paratiel.h> :
3 #define NPROCS 3
Y . .
. shared int count; o

/¢ This program attempts to increment o counter within a critical =/
) /* region. However, the program forgets to uniock the critical o/ /
X /s region and deocdlocks the program. s/ h
A “
K/

oy
*s

counts ()

int me, i;

N me = m_get_myid ();
2
N for (i=0;: i < NPROCS; i++) | \
A m_lock (); ¢
k) . !
K count += 1;
A printf ("process %d says count is Zd\n", me, count);
fflush (stdout);
ij ! \
K i R
l‘ h
y moin () ;
17 count = 9;
1
! m_set_procs (NPROCS);
I m_fork (counts);
$ m_kill_procs ();
printf (“"counter over\n");
o,
e ! :
‘ L]
’
q d
')
)
P :
! *
1; process @ says count is 1 S
~
LY
2]
Al
-
-l
"
D
.]
A
‘ol
C
\
4 J
]
)

MR IR ‘.-._‘.- e -
Abaeadi o alls o Caal)

AR SR LA s
» L T T L T .

\'\.\.'ﬁ‘-.."\..‘!‘\.\' w'\" 1\-‘ L 4'" oy W W

a

U
1
¢
{

I

-
-

-
ot 't

XX A I R

. -

- - e

PO

.

Crn R Y

X BARRAX OO

LU Y,

KA, PN W WA W W Qi q'i.*.v

3.8 M_Sync

The m_sync routine causes a process to spin until all processes which were m_forked
have reached the same point and have called m_sync. The routine is used to synchronize
all processes which were created by a call to m_fork. The best way to explain m_sync is
by example. Example 14 again increments a shared counter. Each process which executes
“counts”, will increment the counter N times, where N is the number of processes created
multiplied by the process’s PID + 1 (PID obtained by m_get_myid). Each process will
execute an outer loop three times (three processes are created). Each process will then
enter another loop and will increment and print the shared counter. This next loop is

executed PID + 1 times. This varies with each process and better demonstrates m_synec.

The output shows the three iterations imposed by the outer loop. Within each iteration,
the count is incremented six times (once by process 0, twice by process 1, and thrice by
process 2). Notice that all of iteration 0 is performed before iteration 1 begins, even though
process 0 1s finished and ready to continue. Process 0 waits for the other two processes to

finish and synchronize before continuing to the next iteration.

38

-t TR R ALY R A A .. . -)
Y A;.l,, Vi 'V'\. .{\".(.’\'\-'.. . '-',',"-'\-',-‘,*,, _,__ T AT o

’.

WA P NI n.uu..'ﬁ-_

oY € ¢ &

0%

-

e Th FLIL ey

-

P ey SR I I

T Ny

LLLLLSE

14
C)

' R —— S—— bt ek AR sR A . .
aptiap Khpibs S0 A 0 b G0 Ak LAV £ 00a¥E 100 20 0\ on g g g Y . A VNN X TR NG T TG e T WO o ooy FOUOR
. A

= -)

Jeressesrssssnses/
/*+ Exampie 14 o/ =
/.‘un..‘.o.n.n.‘t/

finclude <stdio.h>

#inciude <porollel/microtosk.h>

#include <parallel/paratlel.h> !/

#define NPROCS 3 i

shared int count;

/* This program creates NPROCS processes to execute the procedure ¢/

/* “counts". FEach process will increment o shared counter N times */ y
/* where N is NPROCS * (PID + 1). m_sync is used to synchronize o/)
/% all processes before each outer loop iteration. o/
counts () 4
int me, i, j., iterations;
me = m_get_myid (); 4
itergtions = me + 1;
for (i=@; i < NPROCS; i++) 4
for (j=0; j < iterations; j++) }
m_lock () "
count 4= 1;
printf ("iteration %d process %d says count is %d\n", i, me, count);
fflush (stdout);
m_unlock (); r
m_sync (); /* Synchronize ail processes /
} 3
}
main ())
i A
count = ©; '
m_set_procs (NPROCS); :
m_fork (counts); <
m_kiltl_procs (): :
printf ("counter over\n");
}
iterotion © process © says count is 1
iteration @ process 1 sagys count is 2 ,
iteration © process 2 says count is 3 f
iterotion ® process 1 says count is ¢4
iteration @ process 2 sagys count is S ;
iteration © process 2 sagys count is 6 A
iteration 1 process 1 says count is 7 N
iteration 1 process 2 says count is 8 ;
iteration 1 process @ soys count is 9)
. iterotion 1 process 1 says count is 10 .
iteration 1 process 2 says count is 11
iteration 1 process 2 says count is 12]
iteration 2 process 2 says count is 13 A
iterotion 2 process © says count is 14 <
iteration 2 process 1 says count is 15 D
L iteration 2 process 2 says count is 16 *
! iterotion 2 process 1 sagys count is 17 .
D iterotion 2 process 2 says count is 18
E counter over ~
&
K

RN AR

BT ATt

64

IR TN L WU TN W MU W U T T X R T N TV IR LN TR L WU R

3.9 M_Park_Procs and M_Rele_Procs

A process created by m_fork will spin waiting for more work after it has executed the
subprogram named by the m_fork. If no more work is to be done, then the process can
be terminated by a call to m_kill_procs. What if there is more work for each process
to do, but the parent process must do some initial work sequentially? You could leave
the processes spinning while the parent executes. This is very wasteful of processor time.
You could terminate the processes and then recreate them when needed. This solution is
wasteful of processing time due to the amount of overhead needed to recreate the processes.
Each m_fork requires a certain amount of time to copy the named subprogram to different

processors for execution.

The m_park_procs routine suspends execution of each process which was previously cre-
ated by a call to m_fork. These processes still exist at the different processors, but they
are no longer spinning. They have been blocked and are not active. The m_rele_procs
routine resumes the execution of processes which have been blocked by a previous call
to m_park_procs. These two routines are very useful and allow a programmer to reuse

processes without wasting processor time or processing time.

Example 15 executes the original “counts” procedure. The main process creates three
processes to execute “counts” in parallel. After the processes are finished, the parent
process calls m_park_procs to block the processes from execution. The parent prints the
message “Take a Rest”. It then unblocks the processes with a call to m_rele_procs and
calls m_fork to create three processes to again execute “counts”. m_fork is smart and
will not create new processes if they already exist. The output shows that the counter was
incremented nine times. The processes took a rest and then the counter was incremented
nine times again. Notice that the counter was incremented to the value of nine on the first
m_fork and then was incremented to the value of 18 on the second m_fork. This shows
that the counter does not lose its value between m_forks and suggests that the processes
only receive a pointer to shared variables. If the processes were terminated between the
two calls to m_fork, the results would be the same. If you need a shared variable to be

reset between calls to m_fork, you must do it yourself.

40

™ .‘ A L5, -'I\.‘-*x}’\ilﬂ'i"f ***} .., ‘R ™ u‘-. . *p‘,.r*w“-’y‘.n 'f,(‘ - n'ﬁv‘ AT B

L MO L0) Be B\ B ¥ '

Y RO R TR T TRy

o

ey

o

! I

o A W R
..‘ '-3-“'&

AT LA

v
o
)

3

N NN i % %, S O O T Y

R RN R

[
AN

- -

g A

o X N

IO ARSENIACEAS,

[esrresssssesnnsn/
/+ Example 15 s/

VALLEEE X R RN Teys

#include <stdio.h>

finclude <porallel/microtask.h>
#include <parcllel/parallel.h>
#define NPROCS 3

shared int count;

/*
/[
/e
/e
/*
/e

This program illustraotes the use of the m_pork_procs call.

Three processes are created which count by incrementing a
shared counter. After NPROCS iterations of counting, the
parent process parks each process and prints a message.
After the message is printed the parent releases the
processes and continues counting.

counts ()

int me, i,
me = m_get_myid (); /* Who am I &/
for (i=8; i < NPROCS; i++) {
m_lock ();
count += 1;
printf ("process %d soys count is %d\n", me, count);

fflush (stdout);
m_unlock ();

{

$

main ()
count = ©@;
m_set_procs {NPROCS);
m_fork (counts);
m_park_procs (); /+ Park all children s/
printt ("\n\n Toke a Rest \n\n");
fflush (stdout);
m_rele_procs (); /* Release the children ¢/
m_fork (counts); /+ Put children to work =»/
m_killi_procs ()
printf ("counter over\n");

H

process ® says count is 1

process 1 says count is 2

process 2 says count is 3

process ® says count is 4

process 1 says count is 5

process 2 says count is 6

process 1 says count is 7

process ® says count is 8

process 2 soys count is 9

Toke o Rest

process © says count is 1@

process 2 says count is 11

process 1 says count is 12

process @ says count is 13

process 2 says count is 14

process 1 sgys count is 15

process @ says count is 16

process 2 soys count is 17

process 1 says count is 18

counter over

Mt

1 W
LT AT M!ﬁ‘!’ﬁ‘!‘a A S S N ¥ ('-.‘.n."n

v, . y LI I ~ -
B kY 8 ‘ﬁ‘."\‘ 0. 0.0.)l Oa X 5 h .'{“"

+/
v/
s/
+/
s/
+/

'l'l.J-‘l oo mn 00 0 oy o 01

'
o

A Y % Ww W

P BE RN

AN

- o on

1 P e a A m o m A e o - .

. Ny oW, M W TP Y e W T - WL P e e Ty W - ™ T ™ o e M W ™) LN X ¥ e T L N gL

! , sy . . “ o 1

LN '-‘I‘- P A 4 ﬂ\ %\ X W0 Mol A\ A At At " Ao '\] "' W A > A ﬂf‘ A\ﬂ.\f: Lt:' ”}}h\.ﬁfmﬂ\.\;’fr}m}f} '

-

R T N I 4% 4 00 R A) A ha At A

3.9.1 The Inflexible M _Park_Procs

There is one major problem with m_park_procs. If you want o execuie “counts” three
times and then execute it later only two times, you must terminate the original pro-
cesses and create two new ones. This problem goes back to the call to m_set_procs.
m_set_procs not only tells how many processes can execute in parallel, but also tells
m_fork how many processes to create. DYNIX will not allow you to reset the number of
processes you need for the next m_fork without first calling m_kill_procs to terminate

the current processes.

Example 16a illustrates this point. The main process creates three children to execute
“counts”. After they are finished, the main process terminates them with a call to
m_kill_proes. The main process resets the counter, prints a message, and then resets
the number of processes needed to two by calling m_set_procs. These two processes are
then created by a call to m_fork and execute “counts”. The output verifies the program.
If the number of processes had not been reset to two using m_set_procs, the m_fork
would have created three (due to the previous value of m_set_procs). If the original
processes had not been terminated by a call to m_kill_procs before resetting the number
needed to two, DYNIX would have ignored the call to m_set_procs. This is illustrated by
example 16b. In this example, the original processes were not terminated before resetting
m_set_procs. Notice that three processes were used to execute “count” after the message
“Take a Rest”.

42

> ry v,

€ 00t d

W

S e e e E e D L R 1 1 1 G AT, At e TR R AT s b WIALEARAL (ot b oup seb

. [fessvessssessansen/
/+ Example 16a s/
fresrsessassasnsnsn/

#include <stdio.h>

#include <parallel/microtask.h>
#include <parallel/parcgilel.h>
fdefine TWO 2

#define NPROCS 3

shared int count;

/* This program iilustraotes the use of the m_park_procs call.
/» Three processes are created which count by incrementing a
/* shared counter. After NPROCS iteragtions of counting, the
/e parent process kills each process and prints o message.

/e After, the message is printed the parent creotes two new
/e processes and continues counting.

counts ()

{
int me, i;
me = m_get_myid (); /* Who om I s/
for (i=0; i < NPROCS; i++) §
m_lock ();
count += 1;
printf (“process %d says count is Zd\n", me, count);
fflush (stdout);
m_untock ()
i
i
main ()
H
~ount = 0@
m_set_procs (NPROCS);
m fyrk {counts);
m_xi1:' procs (), /* Kitl agll children s/
print! ("\n\n Taoke o Rest \n\n");
tflush (stdout);
cuat = 0 /* reset counter s/
m set_procs (TWO): /* Creote two processes s/
m_fork (counts). /+ Put children to work s/
m_ki'l _procs ().
printf ("courter over\n");
H
process ® says count is 1
process 2 says count is 2
process 1 soys count is 3
process © says count is 4
process 2 soys count is 5
process 1 says count is 6
process 8 says count is 7
process 2 says count is 8
process 1 says count is 9

Toke o Rest

process @ says count is 1
process 1 says count is 2
process ® soys count is 3
process 1 says count is 4
process ® soys count is 5
process 1 says count is 6

counter over

4 A T Al T R A e e
Bt A s v Wit B SR U

s/
*/
</
+/
+/
s/

h i bl
'lﬁ

'Y
c

“r v
o

KEEE ®
xRl laY,

ba 4

ﬁ,
Y

x

oy

=L AN TR NS RY] J

A

t?' ‘(‘K- T

YR ST

45

T

h)

- aps

:) #include <paralitel/microtask.h>
: finclude <paraliel/parallel. h>
| fdefine TWO 2
fdefine NPROCS 3
shared ini count,
/* This program itlustrates the use of the m_park_procs call.
/e Three processes are created which count by incramenting a
3 /* shared counter. After NPROCS iterotions of counting, the
' /e parent process prints o message.
: /e After, the message is printed the parent resets the number
VA processes to two. Notice that three processes are created.
. /* The system ignored the m_set_procs routine because the
: / parent process did not kill all the children processes
' /e first.
: counts ()
i int me, i;
me = m_get_myid (); /* Who om I »/
for (i=®; i < NPROCS; i++) H
)
. m_lock ();
[count += 1;
) printf ("process %d says count is %d\n", me, count);
] ftiush (stdout);
i m_unlock ();
: }
i
W main ()
i
* count = 9;
: m_set_procs (NPROCS);
’ m_fork (counts);
) printf ("\n\n Taoke a Rest \n\n"):
' fflush (stdout);
' count = 9 /+» reset counter s/
K m_set_procs (TWO); /* Creote two processes =/
\ m_fork (counts); /* Put children to work s/
X m_kitl_procs ();
y printf (“counter over\n"):
: }
W process @ says count is 1
¢ process 2 says count is 2
process @ says count is 3
process 1 says count is 4
; process 2 says count is 5
process ©® says count is &
process 1 says count is 7
b process 2 says count is 8
process 1 says count is 9
' Toke o Rest
process 2 says count is 1
v process 1 says count is 2
process © says count is 3
: process 2 says count is 4
process 1 soys count is 5
process @ says count is 6
process 2 sgys count is 7
P process 1 soys count is 8
process © says count is 9
counter over

Tt R AN S N N A A M NN N NN, NP R P e S A A I AP

#include <stdio.h>

freossesssssnnnnna/
/* Example 16b «/

/l“.....“.“‘.../

P e

A

*/
*/
+/
+/
+/
*/
+/
+/
s/

St b At ¥ bl Sl Bk el O

Pty S Y) x « F we w
- L B AL LAY

-

«

L IS

e vl

F ol g

‘o L

- -
T s a e

AR

A

T “L‘ yy, he e pt iyl 14 R R 04000700 2% a1 2 40" a %0 o W, Saigtalan fav bae fet ge0 pgt T O Y R #

A
'
o
'y
3.9.2 The Efficiency of M_Park_Procs and M_Rele Procs §
When m_fork is called, what is copied to the new processors? Does m_fork only copy '
the subprogram named in the parameter? Or does m_fork give each new processor an l
entire copy (data segment, instruction segment, and system data segment) of the process ‘
which calls it (like fork)? This is an important question. If you execute the function -;,.
“counts” three times and then wish to execute the function “sayhi” three times, should)
you terminate the original processes before m_forking “sayhi” or should you just block '-
them and release them when needed? If you do not terminate them, will the m_fork '-"
expect the function “sayhi” to be on each of the processors or will it have to copy the ?_
function to them? If the m_fork must copy the function “sayhi” to the processors, do you N
save any time by using m_park_procs instead of m_kill_procs? :s
The answer is that m_fork copies the entire environment of the calling process to the new <.
processors. Therefore, on subseauent calls to m_fork, no new data or instructions need N
to be copied. This means that time is saved by using m_park_procs and m_rele_procs N
instead of m_kill_procs.
Three examples are used to demonstrate this point. Again, the gettimeofday routine is :
used to test times. The first two examples have a main process and two functions, “counts” ',:
and “sayhi”. Example 17a executes three copies of “counts” using m_fork and then
terminates the processes with m_kill_procs. The main process calls gettimeofday to f:
find the time before it executes “sayhi”. It then m_forks “sayhi” and calls gettimeofday b
again. The output shows that it took approximately .14 seconds to create and execute the :
three copies of “sayhi”. .
e
Example 17b is exactly like the first except that after “counts” is executed, the processes)
are blocked with a call to m_park_procs. gettimeotday is called and then the pro- .4
cesses are released to execute “sayhi”. After each process is finished executing “sayhi”, j;'
gettimeofday is called again. In this case the output shows that the time to release the N
processes and execute “sayhi” was approximately .02 seconds. This shows that blocking ;:_
the processes is much quicker. This program was run several times to cnsure consistent ~
results. ‘: '
3

’m

45

>

I », : _E - h- LA N X “.‘.-\-‘.\. \».‘- oA ._-\-.\- o _'- .-',.q _\- \-‘.1\- ™ ..vr,‘-'_ (\f\\f.‘-‘ \'-'.I‘-‘.‘-{\'.\‘i\.'r'\’\'-\'.\'ﬁ\'.\{‘.'--."’\"-{

YT WV W PU NG WU WU WL IR [T O AN WY VAW (LWL VL XA, aa%0 2% 1% 0"t 0d 4 O ¥ a8 oo o hav - " "'y

3 ‘
i; ‘
N However, were both subprograms (“counts” and “sayhi”) copied in the initial m_fork? :
Pyt
H Maybe the creation of the processes using m_fork has more overhead than copying the v
N additional function (“sayhi”). Example 17c has a main process and one function, “sayhi”. .
) :
:' This program creates and executes “sayvhi” three times. It then blocks the processes, gets Y
' the time, releases the processes, executes the same function “sayhi”, and again gets the R
¢ time. In this program nothing needs to be copied on the second execution of “sayhi”. The N
. output shows the time to still be approximately .02 seconds. This shows that the entire 1
b arent process is copied to each new processor on an initial m_fork. ‘
_ p p p p ,
kN)
‘
b g
¥
;: - ¢
'.
N X
! \
¢ ()
K .
) K
g
I_. W
@
:
y A
N A
Y P
N :
v" g
x 0
. N

»
LS

"
b ‘w
b .
s, ./
¥, -
" -
E N
y -3
B .
A -
t’ -
Yy .
L
! S
5
p ¢
‘ i
{
. t 4
:: !
v 46 '
fa

' 3 1 .) . g 'y -y 1 3 - - - - - - - - - - - - -
St g 000 00 N P AT I 0 I A N N 0 P N K s e A Y IR O L St ey o, 43 R RN O N

.

1)

a0 0 0 8Ty 87 0 0 g 000 ot G S Pl G Gt a? Rt o) Pa” 00" fat Bat Sa¥ u? Gl fut Dot §o¢ gob §ot ol faP LV Pab gud

/reesssssencsenss/

/*+ Example 17a s/

Jfrssvssenresansnna/

TSNS TNy

#include <sys/time.h>

¢ #include <stdio.h>

§ #inciude <parailel/microtask.h>
#include <parallel/paraltlel h>
fdefine NPROCS 3

Vs EE e T

shaored int count;

/* This program is used to show the time it takes to s/ -j
/* create processes. Two routines are used in the progrom. ./ v

i [First, a number of proceses ore created to run the first o/ E

) /* routine and then they are killed. Then, the time it o/ .

{ / taokes to create new processes to do the other simple ./ };

/* routine is recorded. ./ :

1 counts () ;

' § d

int me, i; o

! me = m_get_myid (); /* Who am I s/ ’

s :.f

. for (1=@; i < NPROCS; i++) § -

4 m_tock (); '

; count += 1; o
printf ("process %d says count is %d\n", me, count); ~
fflush (stdout): }‘
m_unlock (); ;,

¢ -
H ak
]

X - i

' ?oy_hu O) f'

) int me; y

| me = m_get_myid (). /* who am 1 s/ i

m_lock (),

printf ("Process %d says Hello\n", me); 3
fflush (stdout); -
! m_untock (): 'j
} ‘2
§) ‘-;
3 main () L,
1 ol
struct timeval t, r; v
struct timezone t1, r1; .
count = @; i
N m_set_procs (NPROCS); i.
y m_fork (counts), -
m_kill_procs (), /* Kill a!tl chitdren s/)
v
Py
gettimeofdoy (&t, &t1); -
| m_fork (say_h1), /e Put ch: . ldren to work ./ ;'
i gettimeofdoy (&r, &r1); >
m_kiti_procs (). o
) printf (“Time before say_h:i is %d %d\n" . t tv_se:z., t tv_usec); '
printf ("Time aofter say_hit is: %d %d\n" . r tv_sec. r. tv_usec): 9
’
t ;"
.'-.
o
3

Rk
. -

1

—yr g
a
'

1

. P A N L T I N Nt R R T T Ty T R S O e I T VoL S I TR R P R T G -2
2 N '5,* O Tt ST LN O AL e }{‘."'m'

-
. » "
g, X 2"X 3%, N u'v - "y

"u’ S 028 0a® tut 02t .9 0af 1ol St Y P R e N T LR L oA R Aacatadite 4% e g e BAsiins iy ety i aie e alodaiie ST A *n i Sl Bul At A0 Al - WL
N 4
.
LY
’
process @ says count is 1 *
process 2 says count is 2 .
process 1 says count is 3
process @ says count is 4
process 1 saoys count is 5
process 2 says count ts 6 :
process © says count is 7 N
process 2 says count is 8 [
process 1 says count i1s 9
Process © says Hello
Process 2 says Hello
Process 1 says Hello .
\ Time before say_hi is: 549149061 530000 '
Time aofter say_hi is: 549149061 670000 N
‘<3
' ‘
.]
' h
" .
N B
b .
\]
] -
‘ .
] -
“ -
y! v
B
)
Y \
n
X)
1
2]
- ¥
'’ -
. o
" ‘\
h?
o '.\
? .
Ca A
o "
o .
:‘ K
N ’
n ’
. r
. &
I
[
.
»
k)

" .
o -
b 3
- - he » -a” A - - - - . - = * - - " T To® - - - - - LY - - - - - - . - - .. -
AV ol S et o ol S A P -\ LG P e o X o .;r,,_- v AN A N

2 8 6 Ry ..c. RAENY ~ TRy

. #include <sys/time.h>

; #include <stdio.h>
#include <porollel/micr
#incltude <parallel/para
fdefine NPROCS 3

shared int count;

{ /*» This program is use
¥ /% routine on existing
/+ to execute a separa
h /*» and then released t
P /* prints o messoge.
/* record the times.

counts ()

int me, i;
me = m_get_myid ();

for (i=0; i < NPROCS
m_tock ()
count += 1;

Jreessassasassnss/
/* Example 17b »/

/"O..“.."..“'/

otask.h>
flel.h>

d to record the time it takes to execute o
processes. First, the processes are created
te counting routine. Then they aore parked

o execute o simpie routine which

The "gettimeofday" system call is used to

/* Who am 1 =/

poiT+) H

printf ("process %d says count is %d\n”, me, count);

fflush (stdout);
m_unlock ()

}
’ i
] SQay_ hi ()
i
: int me;
me = m_qget_myid ():
\ m_lock ();
; printf ("Process %d
i ffilush (stdout);
! m_unlock ();
8 i
1
mgin ()
i
' struct timevaol t, r;
struct timezone t1,
X
P count = @,
: m_set_procs {NPROCS)
m_fork (counts};
: m_pork_procs ()
) gettimecofday (&t &t
\ m_rele_procs (),
m_ftork (say_hi),
get* meofdoy (&r. &t
m_ki:y_procs {(j,
. printf ("T i me before
) printf ("Time atter
)
¢
-\-..'-- " W' .p -

/» who am | »/

says Hello\n", me);

ri1,;

/* Park all children o/

Ty
el Reiease all Children ./
/* Fut children to work s/
1.

13 Zd Zd\n'", t tv_sec. t.tv_usec)
72d %d\n' , r tv_sec. r . tv_usec).

say_h-
say_hy s

"

v
./
./
./
v/

e e A e A AL A o L0 g e ko

CAN TN AN

e N

. s v T

LS

.
G et T

e ar
»

7 T

xe 0,
)

VY YW

process
process
process
process
process
process
process
process
process
Process
Process
Process

NGO =+ —=20ON =200 -NO

Time before say_hi
say_

Time after

N N A NN AT SN M A N N NP N

says
soys
says
says
says
says
soys
says
says
says
says
says

count
count
count
count
count
count
count
count
count
Hello
Hel l o
Hello

[7 I T BV I~ BT BT R I . 1

is:
hi is:

[0 I

W oo~

549149378 S00000
549149378 520000

e N e e e e e e Lt
PPN AP SN

Rt

-

NRLENR T L

o

1 4

R a4k T ML
: X

R N S TN e Pl

I

Ly

T AT ER T L LT

o ‘.‘;-'_‘" K

13
oy
€

Y .7.. S

-

14l

finclude
#include
finciude
#include

Jrerasssesssesnves/
/+ Example 17¢ s/
J/esessasessrnsnns/
<sys/time.h>
<stdio.h>
<paraltel/microtask.h>
<parallel/paralliel . h>

#define NPROCS 3

shared int count;

/+ This program is used to record the time

/* routine on existing processes.

it

tokes

to execute o

/* to execute the routine "say_hi". Then, they are parked,
/e reteased, and then they re-execute "soy_hi". I om interested i
/* the time to re_execute the processes.
say_hi ()
int me;
me = m_get_myid (); /+ who am 1 «/
m_lock ();
printf (“Process %d says Hello\n", me);
fflush (stdout);
m_unlock ()
i
main ()
{
struct timeval t, r;
struct timezone t1, ri1;
m_set_procs (NPROCS);
m_fork (say_hi);
m_park_procs (); /* Park all children s/
gettimeofday (&t, &t1):
m_rele_procs (); /* Release all Children =/
m_fork (say_hi); /* Put children to work =/
gettimeofday (&r, &r1);
m_kill_procs ();
printf ("Time before say_hi is: %d %d\n", t.tv_sec, t.tv_usec);
printf ("Time ofter say_hi is: %d %d\n", r.tv_sec, r.tv_usec):
}
Process © says Hello
Process 1 says Hello
Process 2 says Hello
Process © says Hello
Process 1 says Hello
Process 2 soays Hello

Time before soy_hi is: 543149628 780000

Time ofter say_hi is:

549145628 790000

P A U S R A S A A AR SRR LU SRR
' K . . > . - N 3 - N E . N o - 3

.(.‘-‘

\!

e

Lg

\J'

-

S SRR

N N o
:_ ¥

+/

First, the processes are created ¢/

./
n s/
./

N .T _J‘\u’ \-:_‘-:\J‘\-’

'\{ __-‘_
3

oL W

' gtw e

N

"%
»

% Ny

2 e o e S,

g i 3

>

1,8

il R e o

X

e e e e T

N

S %y

JACR

-

AP LA] o

1
<

.

e i‘l"-‘sﬁ‘-‘l‘vl' .

PR

]

.1_

LY

P,

s

L oA

>
b

Oy

3

5

*

UWO VYNNG YU

-

R T LR TSI PO P RO T (M LR W M W o vp ata @i, CaEa T AR YAl vaf b
& NG TR TN ! U

3.10 S _Lock and S_Unlock

The s_lock and s_unlock routines are very similar to the m_lock and m_unlock routines
except they give the programmer the flexibility of using more than one lock. A lock is
created by declaring a variable to be of type slock_t. The lock must also be declared as
shared. The s_init_lock routine initializes a memory-based lock. Both of these actions
were done for the programmer when using m_lock. After a lock is created and initialized,
a programmer may use the lock to ensure mutual exclusion using the s_lock and s_unlock
routines. This is done exactly as before using m_lock and m_unlock. However, now a

process can create multiple locks and use them in different contexts.

The following program increments two different shared counters. Three processes are
created and each will increment the two counters three times. The main process begins
by initializing two locks lock! and lock2. The main process then calls m_fork to create
the processes and execute “counts”. Each process gets its PID and then enters a loop
to increment countl. lock! is used to ensure mutual exclusion while incrementing countl.
After a process is finished with the first loop, it enters a second loop and begins to increment
count2. lock2 is used to ensure mutual exclusion while incrementing count2. Notice that
the addresses of the locks are used as parameters to the routines s_init_lock, s_lock, and
s_unlock. The DYNIX programmer’s manual says to declare a lock to be a pointer to
type slock_t and to pass these pointers. This does not work. However, if you declare the

variables to be of type slock_t and pass their addresses, everything works just fine.

The output shows that each counter was incremented nine times. Notice that the value
of 7 is not printed for counti. This is because process 2 had entered the second loop to
increment count? and had overwritten the output buffer before counti’s value of 7 could
be printed. The counters are independent between the two loops and were incremented
correctly, but the output buffer is shared between the two loops. Since lock! has no effect
on lock2, there is no mutual exclusion between the two loops and output can be lost. Both

counters could be placed in one loop using both locks.

52

. ‘J‘"- ‘Q")‘"J“;“-"I‘ I*“I*‘*I)I“\ - vy m -.*"‘f-‘“l*-f-".l "‘.'.(l NSt R A -~y -.,‘-‘.-._.’.‘..‘.:-‘-_'.-
S B O LB Dae LB St L8 S | B ' WP WOy o . . () A .)

YR

S T LA N

TS

2572 U P PITVVE

s

AL G So e ol

NIRRT

_‘-' LA ‘-; o oy s

?5 Oy &y q.- ."-'

P
L]

25

AR oLl

X _tX

LY K RO P SR AR O X T W N S R R A I G T O R S O - -

/etsssssnresasrns/

/*» Example 18 s/ 4
[estsssrnssennsnns/ -
K #include <stdio.h> N
Y #include <parolliei/microtask.h>
N #include <parallel/paraliel. h> .
\ #define NPROCS 3

shored int countl, count2;
shared sltock_t lockl, lock2; /* Declore the Locks s/

) /+ This program illustrates the use of focking voriables to s/ :
} /* ensure mutuo! exclusion. Two locks are created by the v/ g
3 /+ decloration of type "slock_t" and the initialization call e/ !
K /% “s_init_lock". This program increments two counters in =/ 3
2 /* porollel. Each of three processes will concurrently ¢/ K
/* increment the counter and print its value. Two critical s/ -
¢ /+ regions ore implemented with the two locks to ensure that s/
‘ /* the incrementing of a counter and printing its value ./)
/* appear as atomic instructions. s/)

counts ()

int me, i;
3 me = m_get_myid (); /* Who am I </

for (i=0; i < NPROCS; i++)
u s_lock (&lockl); /* tock the critical region s/
‘¢ countl += 1; 3
printf ("process %d says countt is %d\n", me, countl); V
fflush (stdout);
s_unlock (&lockl); /* Unlock the critical region s/ :

ws -

}

-
for (i=8; i < NPROCS; i++) 1§ N
s_lock (&lock2); /* Lock the criticel region e/ Y,
count2 += 1, b
printf ("process %d says count2 is %d\n", me, count2);
{ fflush (stdout); N
" s_unlock {(&lock2); /* Unlock the criticol region e/ ~
y ; -
} "
\ e
. main ()
{
b N
b s_init_lock (&locki,&lock2); /+ initialize the locks s/ .
) countt = @; :
countZ = @, 9
m_set_procs (NPROCS); *
m_fork (counts);
o m_kill_prozs ();

pr rntt {“counter over\n'"),

ELT S LALT

b T S S]

-)
:t'.u At > ..‘,"t.,l'l. (B .l.'.l X o.. o.

B S S O S T R O R R T O Oy P T T T L T T Y T T p atat|

i
X .
b
¢
D
7 process 2 soys countl is 1
¥ process 1 says countl! is 2
process ® says countl is 3
¥ process 2 says countl is 4
process 1 says countl is §
process 2 says countl is 6
| process 2 says count2 is 1
' process 1 says countl is 8
| process 2 says count2 is 2
process ® says countl is 9
| process 1 says count2 is 3
3 process 2 says count2 is 4
process B soys count2 is 5
M process @ says count2 is 6
R process 1 says count2 is 7
process @ says count2 is 8
process 1 says count2 is 9
counter over
b
1
D
\
.
[}
[}
]
;
!
?
D
¥
) -
K -
1 LR
' -
) ;

t

OGN

CA e S - B N T G IR L SRS AN
ot ﬁ*..,'wﬂx:\, Vx.a AT j\J\,ﬁ'\'_\.\ s

» B R O B L UL T TS WL T

T gt W T S e it A T R L S L S Qi

SIRRTUAACA T PO O T WO N NN W UV LWL ALY X TN NG XY A VG HASRMEAS WU W N L g VO BT

"
»
he:
el
3.11 S Init_Barrier and S_Wait_Barrier :..:_l
f
Py
The s_init_barrier routine initializes a barrier as a rendezvous point for N processes, where »
N is passed as a parameter to s_init_barrier. The s_wait_barrier routine delays each calling "
process in a busy-wait spin until exactly N processes have called s_wait_barrier. In C, §E
a barrier is declared as a shared data structure of type sbarrier_t. The function of the '.ﬂ':
s_wait_barrier routine is exactly like the m_sync routine with the added flexibility of ‘
specifying the number of processes to synchronize. It also allows the creation of multiple f::i
barriers.
The following program again increments two shared counters, count! and count2. The i
main process will create and initialize two locks and two barriers; one for each counter. :'.':
The main process creates three processes to execute “counts”. Each process gets its PID ..?':
and enters an outer loop. The outer loop is designed to demonstrate the use of the barriers. ':';
Again, I have two inner loops to increment each counter separately. lock! and lock2 provide "
mutual exclusion for count! and count?, respectively. The main process has initialized each ;_:
barrier to wait for three processes (the number created). Each process calls s_wait_barrier N
between each inner loop. All processes synchronize on barrier! after incrementing countl. E_
All processes synchronize on barrier2 after incrementing count2. ;‘
.vf
The output shows that each counter was incremented 27 times, nine times per outer loop. E
Notice that each counter is fully incremented and printed before the next loop has begun. x

This time no output is lost.

Y2

-

\"‘: i1 J "’1,-'}1".'{,,”’"- ‘

85 i

A M Y o RN N T e W - . . . - . Cmaa - . Sy -
LL.".A ..\.A." Py ‘.'-QL-A:'-A:.{A.‘M el ".12' WA 1S, Q) g o

/»
/*
//.
/
/*
) /e
) /*
H /*

VA
3 /
b /e

/[

/[

/*
¥ /.

{

PR

!

AREVANP

it iae ¥ Ak taP M08 HAY BavEan 6atalatatacafat VAT tan davatar ey I T T o ey

N e e I I U Y VR R e N W Te N e e %A et e T, R, my = m ol e e e e -
_ o '('-P\I\'}" N N .'."'r P A S N A N S A AT NN

Jetssnsnsnrsennas/

/* Exaomple 19 »/

/“.“‘.“'."“‘/

#include <stdio.h>

finclude <parallel/microtask.h>
#include <paraltiel/parallel.h>
#dctine NPROCS 3

shored int countl, count2;
shared sbarrier_t barrierl, baorrier2; /t Declaore the Barriers s/
shared slock_t lockl, lock2; /» Declare the Locks o/

This ;rogram illustrates the use of locking variables to ./

ensure mutual exclusion. Two locks are created by the ./
declaration of type "slock_t" and the initializotion call =/
"s_init_lock". This progrom increments two counters in =/
parallel. Each of three processes wili concurrently s/
increment the counter and print its value. Two critical »/
reg.uns are implemented with the two locks to ensure that =/
the incrementing of o counter and printing its value o/
appear as atomic instructions. ./
Two baorriers are dectared by the type "sbarrier_t" and ./
initiaglized by the call to “"s_init_borrier". The two */
borriers are used to synchronize all the processes after =/
incrementing each counter. The caoltl to s_wait_barrier ./
will block the colling process until NPROCS processes ./
have made the call. v/

counts ()

int me, i, j;

me = m_get_myid (); /* Who am 1 =/

for (j=@; j < NPROCS; j++)
for (i=8: i < NPROCS; i++)
s_lock (&lock1): /+ Lock the critical region s/
count?l += 1,
printf ("process %d soys countl is %d\n", me, countl);
fflush (stdout);

s_unlock (&lock1); /* Unlock the critical region s/
{
s_wait_barrier (&barriert); /* All processes synchronize s/
for (i=0; i < NPROCS; i++) §

s_lock {&iock2); /* Lock the critical region s/

count2 += 1

printf ("process %d says count2 is %d\n", me, count2),

fflush (stdout);

s_unlock (&lock2); /* Unlock the criticol region =/
i
s_wait_barrier (&barrier2); /* All processes synchronize »/

s_init_barrier (&boarrierl, NPROCS), /= initialize the borriers o/
s_init _borrier (&barrier2, NPROCS),

s /

s

_irit_lock {(&iockli, [initiol ze the Jlocks L
init_lock (&lock2) .

e,
2 = 0.

m_set_procs (NPROCS) .
m_fork (counts) .

s v _» =

o B i X

x'f‘_

v h 2 W 4

P gnt_ o

L

P

- 5-, TR W Tema T

'y

PR

m_kill_procs ();
printf (“counter over\n");

}

process @ says countl is 1

process 2 says countl is 2

process 1 says countl i1s 3

process @ says countl is 4

process 2 says countl is 5

process 1 says countl is 6

process @ soys count1l is 7

process 2 says countil is 8

process 1 says count! is 8

process © says count2 is 1

process 2 says count2 ‘s 2

process 1 says count2 is 3

process ©® saoys count2 is 4

process 1 says count2 is §

process 2 says count2 is 6 r

process 1 says count2 is 7

process @ says count2?2 is 8 ;

process 2 soys count2 is 8 Y

process t says count?! is 1@ .

process 2 says counit' is 11 ‘:

process 1 soys countl s 12 :&
{ process @ says count! is 13 ™,

process 2 says counttl is 14 Sal

process 1 says countl is 15

process © says counti is 16

process 2 says countl is 17

process @ saoys countl is 18

process 1 says count2 is 10

process ©® soys count2 is 11

process 2 says count2 is 12

process 1 says count2 is 13

process @ says count2 is 14

process 2 says count2 is 15

process 1 says count2 is 16

process @ says count2 is 17

process 2 says count2 is 18
) process 1 says count?! is 19

process 2 says count!l is 28 '

process © soys countl is 21 o
: process 1 soys countl is 22 :

process @ says countl1 is 23 W

process 2 says countl is 24 A

process 1 says countl is 25 :?

process @ soys countt is 26 -%

process 2 soys countl is 27

process B says count2 is 19

process 2 says count2 is 20

process 1 says count2 is 21

process @ soys count2 is 22

process 2 says count2 is 23

process 1 says count2 is 24

process @ soys count2 is 25

process 2 soys count2 is 26

process 1 says count2 is 27

counter o

IR R R M N L NN T ST WO R O R R AR T A e % A0 A% 10 AR A et OPRIPE o Saimai el taty 40, 5, BB 70,0 Put 5. 12V 409 yat et -0-.i.
Yy’
h
5
4
!
3
3.12 M_Single and M_Multi 9
by
How can a programmer print out a message within a m_forked subprogram? Not every b
process should print the message. How can you perform any type of 1/O only once (such 0y
as reading a counter value)? The subprogram cculd be written so that only a specific ‘
process (based on PID) performs the read while the others wait. The m_single and !
m_multi routines suspend the execution of all child processes while the parent (process b
0) performs some sequential task (I/O). The m_single places the children in a spin while 2
‘ the parent continues execution. The parent calls m_multi to resume the execution of the -
} . . . "]
{ children. The children do not execute the code between the call to m_single and the call o
to m_multi. .
. i
Example 20 performs the same function as the previous program. It increments two shared ¢
: s
! counters. Again two locks and two barriers are used to ensure mutual exclusion and)
synchronization. However, this program prints a message between each iteration of the 'i
) outer loop. Only cne process should print the message (the parent). The print command is K\
¥ " A
encapsulated within an m_single / m_multi block. The output shows that the iteration N
number was printed only once (by the parent) after each iteration of the outer loop. ™
\.
)
3
1
» N
s
P
4
‘ ;
‘ 7.
; 4
J 4
-
el
N
-
£n
a
’
L
/¢
L
>3
58 y
gt
j .
: ¢
)

™ - ¥ N N R e M e " Y) RN Py y .
e A R e o AR e S/ S A St S e S AR e T e

oaC a0 a0 s iat gt 4e%

o

(}

L)

)

D
0
:':

i,

‘:0 Jossssersrsenssse/

! /» Example 208 ¢/

Jevsssesssnesnense/

N #inciude <stdio.h>
a #include <paorallel/microtask.h> ;
u #include <paraliel/paraltel . h> .
a #define NPROCS 3)
; shared int count!l, count2;

shared sbarrier_t barrierl, barrier2,; /* Decliore the Barriers s/
¥, shared slock_t lockl, lock2; /+ Declare the Locks ¢/
e /* This program illustrates the use of locking variables to =/
I /* ensure mutuol exclusion. Two locks are creoted by the v/
\ /» declaration of type "slock_t" and the initialization ccll »/
N, /% "s_init_iock". This program increments two counters in s/
/* parallel. Each of three processes will concurrentiy s/
" /* increment the counter and print its value. Two critical =/
éﬁ YA regions are implemented with the two locks to ensure that =/
) /* the incrementing of o counter and printing its value ./
; /* appear as atomic instructions. ./
M) /+* Two barriers are declared by the type "“sbarrier_t" and s/
ﬂ /e initialized by the call to "s_init_barrier". The two s/
: /» barriers are used to synchronize all the processes after «/
/e incrementing each counter. The calil to s_woit_barrier o/
/* will block the calling process until NPROCS processes o/
/% hove mode the call. o/
S /+* The m_single and m_multi system colls ore used to aollow o/
o /* the parent process to print c message. These calls s/ h
N /+« suspend all processes except the parent and only the v/ .
- /* parent is allowed into this critical region. o/ .
B
3 counts ()
)Q
N int me, i, j.
me = m_get_myid (); /*+ Who am 1 ¢/
, tor (j=@: j < NPROCS,; j++)
' for (i=0; i < NPROCS; i++) 1}
d s_lock (&lock1),; /*+ Lock the criticol region s/
count?! += 1;
r’ printf ("process %d says countl is %Zd\n", me, countl});
fflush (stdout);
J s_unlock (&lock1); /* Unlock the critical region s/
}

. s_woit_barrier (&borrieri); /* All processes synchronize s/ .
z tor (i=0; i < NPROCS; i++) :
? s_lock (&lock2); /* Lock the critical region s/ K
'; count2 += 1
" printf ("process %d says count2 is %d\n". me, count2);

fflush (stdout),
; s_unlock (&lock2): /* Unlock the critica! region s/ :
O c_wait_tarrier (&barrier2;: /* All processes synchronize s/ -

L]

:' /+ Parent process prints ¢ message s/ :

.

m_singie {);:
q print¢ ("\nlteratron %d Completed\n\n". j+1},
%! ftiush (stdout),
¢ momult. (),
bt §
9 }
man (
w €

<
‘el

) R M W
e.. * 8,%8,

1 " Mty MW [P R L L O TR T e v T o L T L
P AP LI LY OO0 l',.“»’. '(' f |. J' ,ff.'f J.ﬂl"‘\'*'—¢ .\, J'.-/"i",‘-l‘ '.\'-‘v. w

JATERIU N LA LN Uie L 4 e LR O O T A MO T IO T T T T e TN W Y i M WL g o o i a0t oY, VLT TOY TN) 4 WA VIV N "t
LY
)
~
)
. . (&
\
* .
s_init_barrier (&barrier?, NPROCS): /» initialize the barriers s/ ::
s_init_barrier (&barrier2, NPROCS);)
s_init_lock (&lock1l); /» initialize the locks s/ "
s_init_lock (&lock2); :’
countl = ©; '
count2 = ©@; r.
A

m_sei_procs (NPROCS):
m_fork (counts);
m_kiltl_procs ()

printf (“"counter over\n");

-

PP LA A

nl
13

AP AK A 4
MR

PR

- e
s i

‘;1

hd .' .";'-";

L N N g

U
»

A

A4

L]

: g
}(‘
iy
D

v

s
"

b

-

L}
.

L ALY LA Y -
VRPN LT OISV IS I Sy

ALt o' P
-
A
o
A
»
2,
-~
:»
"
process © says countl is 1 e
process 1 says countl is 2 ?_
process 2 says countt is 3
process @ sagys countl is 4 !
process 1 says countl is 5 -
process 2 says countl is 6 3
process © says countl is 7 s
process 1 says countl is 8 ?~
process 2 says counti is 8 o
process 2 says count2 is 1 -
process © saoys count2 is 2
process 1 says count2 is 3
process 2 says count2 is 4
process @ says count2 is 5
process 1 says count2 is 6
process 2 soys count2 .35 7
process ® says count2 is 8
process 1 says count2 is 9
Iterotion 1 Completed
process @ scys countl is 10
process 1 says countl is 11
process 2 says countl is 12 n
process 1 says countt! is 13 »
process ® says count) is 14 2
process 2 says countl is 15 h'
process 1 says countl is 16 oyt
process @ says countl is 17)
process 2 says countl is 18 .
process 1 says count2 is 10 L
process 2 says count2 is 11 »
process @ says count2 is 12 X
process 1 says count2 is 13 o
process 2 says count2 is 14 0,
process @ says count2 is 15 o
process 1 soys count2 is 16 }.
process 2 says count2 is 17)
process @ soys count2 is 18 »
| B,
Iterotion 2 Completed ?h
process © says countl is 19 33
process 2 says countl is 20 w
process 1 says countl is 21 "o
process @ says countl is 22 [
process 2 says countl is 23 S
process 1 says countl is 24 -
process @ soys countl is 25 e
process 2 says countl is 26 ;{
process 1 says countl! is 27 -
process 2 Lsuys count2 is 19 ‘ﬂ
process © says count2 is 20 »
process 1 says count2 is 21 PR
process 2 says count2 is 22 O
process @ says count2 is 23 t{
prccess 1 says count2 is 24 ;
process 2 says count?2 is 25
process B sagys countlZ s 26
process 1 savs count2 is 27

I[teroticn 3 Complieted

counter over

EYRT

Ao A

XKARNK

R s AR L bR a8 6 'S A'R Ak Rt "
UV UM V42 el S U LAt £ B R gl) Gl DAL A AR AN AR LA 004 L hon™ it S atioart e a ave.

3.13 M _Next

The m_next routine increments a global counter. The counter is initialized to zero each
time the m_fork, m_single, or m_sync routines are called. You may obtain the value of
the counter simply by calling m_next which returns its integer value. Each time m_next
is called, it returns its current value and then increments the counter. These two steps
are accomplished atomically to ensure that no two processes will see the same value of the

counter.

Example 21 illustrates the use of the m_next routine. In this example, “counts” is called
to increment a shared counter nine times. The main routine creates three processes to
execute “counts” in parallel. In this particular example, the main routine does not care
how many times a process increments the counter, just as long as the counter is incremented
nine times. Each process does not know how many times it should increment the cc anter.
It only knows the number of times the counter should be incremented, nine. By calling
m_next before incrementing the counter, each process can see if the counter has been
incremented the correct number of times. If the counter has not been incremented nine
times, increment the counter, otherwise return. The output shows that the counter was
incremented nine times. However, each process did not increment the counter three times
as in previous examples. Process 1 incremented the counter four times. The m_next
routine is most useful for dynamic applications. For example, an application where each
process performs the same task on a set of data, but the amount of data is not known until

run time.

62

L_A‘.LAA-L

P NN T RN .r":" SIS ATA "M‘ "." T R R A A R N AR R
MLMC-_A ! e L X -

g G 4 K O Salel N

.

T

-

AR RSl Ju

LA X R AT

s
R v .
.

vy

L]

y WA

"

R Kt X X A i

AR R e P = s

2 .
.

St

PRI NN

¢ f-rlf" /7 s

AR A

e

LY

L)

A R ol o

SR AT S W T g

Ly

PO TV AN LV TR TW DS TR T T T iOrse

U HT N TR R0 5% 3

LY
.
/e rsssss00sssns/ o'
/+* Examplie 21 =/ h
Josssrensssannnan/ »

#inctude <stdio.h>

#incltude <parallel/microtask.h> iy
#include <parallel/parallel . h> t(
#define NPROCS 3 o

<

#define N 9 =
shared int count; ;
A This program illustraotes the use of m_lock. The program counts s/ ,
/e by increasing the value of a variable in paraliel. The program =/ -
/* maintains mutuo) exclusion with a call to m_lock. Each copy of +/)
/* the procedure increments the shored variaoble "count" s/ o
/* concurrently, and therefore, mutuol exclusion is required. o/ ::.
/. The progrom also shows how to use the global counter m_next. ./ P
/* Each time m_next is called, its vaolue is incremented. Each ./ N
/* process will increment count until it has been incremented ./

VA nine times. ./

counts ()

$

int me;
me = m_get_myid () /* Get my PIL o/
while (m_next () <= N) 1}

m_ilock ();

count += 1,

printf ("process %d says count is %d\n", me, count);

fflush (stdout);
m_unlock ();

: 8
; B
o
main () ”
Ld
H >
count = @, -
Lo
m_set_procs (NPROCS); /* Create NPROCS processes s/ .
m_fork {(counts);
m_kilt_procs (); /* Terminaote all Processes except Parent s/ .

printf ("counter over\n");

Voe e .

-

.
.

process © says count is 1 »
process 1 says count is 2 {f
process 2 says count is 3 \:
process ! says count is 4 ~ A
; n
process © says count is 5 o
process 1 says couni is b H;
process © says count is 7 ,%A
process [says count is & »
procecss 1 scys count is 9 D
counter over _y
N
N
e
-...n
RS
.'
>
]
8
N
A,
c'j
“
N
»
aV
AR I T NS T \'\"-
SRR T AT o !
RSN AN S

XA AR SRR o) ') (N} + l 'l".vgv. ; T T T LN "B gVe 32 4% B's 4V 4, -§ra A" - D EATe BNy 00.0°00°0.0 b

L
K

505 ®

3.14 Matrix Multiply

N

So far only very simple (and somewhat useless) programs have been used to illustrate the

function of the Parallel Programming Library. Example 22 demonstrates “Data Partition-

EL L@

Voas

ing”. The program is to multiply two six by six matrices. Each row of matrix A will be
multiplied by every column of matrix B to produce a new row in matrix C. It appears very
natural to partition the data by rows. Therefore, “row” is a routine that will multiply one

row of matrix A by every column in matrix B to produce a new row in matrix C. <

The program declares each matrix A, B, and C to be shared. The main process then calls r
init_matrices to read in matrix A and B. It sets the number of processes to be created »
to six by using the call to m_set_procs. It then calls m_fork to create the processes and

to have each execute the function “row”. Six processes were created, one for each row in

Matrix C.

Pl r "("‘ '.n’.-‘;"

NN

Upon executing “row”, each process immediately gets its PID using m_get_myid. Re-

«
)

member that the PIDs range from 0 to 5. The row indices of matrix C also run from 0

- o

to 5. This is more than a coincidence. Each process i will produce row i in matrix C by

-

multiplying row i in matrix A by every column in matrix B.

After each process is finished, the main process terminates all the child processes (executing
“row”) and prints out the results. It would not have accomplished anything to have each

process print out its own results, since the output must be sequential.

AL AL

' ':':\'} by

Pt i g

64

s

T N T 8T NI e o N e SN N A PR S %7 A e e N S A AR G R (R A \

P

€ 3

-

v, 1.5
P T

AR

.
»

x

S %N

~ 83, 1 T\ ‘ ‘ o v \] ® San_gab ol -gat (A N TG - 8 L6 fab h gt - ga? fad 3 » - ‘al & \d . fa® . ¥ N “Aa® . et

Al WA gy

¥
Jereesessennraservnane/ ;‘
/+ Example 22 ./ N
/* Motrix Multiply «/)
/‘.'..’.‘..‘."“““‘/ ‘:
#include <stdio.h> s
#include <parallel/microtask.h> -
#inciude <paraliei/parallel.h> E:

#define N 6

-

shared int c[NJ[N]., a[NJ[N]. b[N][N]: ”

1

'’

p /e This procedure multiplies ro+ i of matrix A by ./ ?
E /* each column of maotrix B and stores the result ./ {f
{ /* in row i of matrix C. ./ ?;l
e

void t

y row [
’ rox 0 %
int i,j.k; &‘
~

i = m_get_myid (); /% Which row do I multiply »/ t

; for(j=0; j<N: j++) } ’
; clilly] = o; “a
: for{(k=0: k<N; k++) N
c[illj) += alillx] » b[k]1[j]: ~

} ~

t

H N

/e This procedure reods in two N by N matrices »/ :_

™

void »
init_matrices () EJ

e

nt i,), e

for (i=0; i<N,; i++) § ‘A

scanf ("%0%d%d%d%d%dRI%IBd%d%d%d", &a[i])[0], &ali][1], &o[i][2].)
&o[i][3]). &a[i)[4]. &a[i}[5], &b[][], &b[+][1], &b[]}[2].)
, &b[i]03], &«b[i}(¢]. &b[il[8]): o
§ Dne

r

} o

o

e

/* This program multiplies two N by N matrices, A ond B to get +/)

/* matrix C The program is executed in parallel by creating ./ ;t

/* N processes with m_fork Eoch child process will multiply ./ '3.

[/ row i of matrix A by each column of matrix B to get row 1 of s/ L%
/* matrix C, where . s the PID of the process Atl three ./ :}

/*» Matrices are 1n shared memory for each process to access e/ -
/* Since each process is writing to a separate row 1n C, no o/ i-

YA synchronization tc access memory 1$8 necessary o/]

main() -

! R

void init_matrices (), row (). :f
Rt w4

‘nit_motrices (). /e read in matrices s/)
'J

m_set_procs (N) ¢
m_fork (rowj. /e creote €& processes */ ?;
m_k1 1) _procs (). D,
Y
/+ pr.nt out each matri» s/ p

)

R '\‘
WP T e N " L RN N R R R I I R R o . - N e s e e P e e o e e e m e e . RSy

! ‘V"V\\-(N "" " Ry, W, '-"uﬂ--\-"'\.' x-\.-»."'-\-\" ~.~."\.-.'-\'-." -~ x-».'x'-.' ~ ‘."-,‘;.' A A N R LSy

W printf
printf
for

N O e NN

R YL
.‘..’)I‘J.

B Y

¥ _gat . o ~ .
L

AR LR e,

(u

(ll
(i=0; i<
for (j=0.
printf
printf ("
for (j=0;
printf
printf ("
for (j=0;
printf

\ > gak \.L ‘l N W .~
MATRIX A MATRIX B
N: +4) 4T

JEN; j++)

("%3; “ooelilliD):

j<N; }++)

("%33 “oob(il0i1):

j<N; j++)

("%3d *, c[i}[iD):

printf("\n");

o,

MATRIX B

N e LN
~NoOOe LN
Noogpe wr

LN "

[o RN I RS B N 1]
[a RN Be BNG UE_)

[0 JREN B e B O, IR A 7]

vl' S A "’\.'f\"&".'(Cy -I' .'_\;.r

MATRIX C\n");

MATRIX C

e

66
99
132
165
198
231

.
"

66
98
132
165
138
231

N

66
99
132
165
198
231

A
LSnaliaa

66
99
132
165
198
23

66
99
132
165
198
231

LT T

SO

66
99
132
165
198
231

-
o

.. PN
- .~ d
DU W VLTI S Y iy 3

Lol -

T WYY

.........

3.15 Shared Memory

Shared memory is a very effective and efficient mechanism for communication. Any variable
which is shared between processes and changed by those processes is a type of communi-
cation. The difficulty of shared memory is mutual exclusion. This nLieans that only one
process should update a shared data item at one time. Otherwise, the processes could
produce incorrect results. Example 23 illustrates how shared memory can be used for a

more explicit type of communication.

This program creates three processes. The three processes are arranged logically in a circle.
In other words, process 1 can only talk to process ¢ + 1 and © — 1 (the process on its left
and right). The process index will be its PID. Each process will have a mailbox. A process
can only write to its mailbox, but can read from any mailbox. The processes are to pass a
number from one process to another around the circle. After the number has been passed

in a complete circle, the parent will print the number out.

The main program begins by initializing each mailbox to 0 which designates an empty
mailbox. The mailboxes are declared as an array in shared memory, so that each process
can use indices tc read the mailboxes. The main process then creates three processes to
execute “nodes”. In “nodes”, each process immediately gets its PID and computes its
neighbor’s indices. The parent process (my_node = 0) reads in the value of the number to
pass. It then places the number in its mailbox for its left neighbor to read. The parent
process then spins while its right neighbor’s mailbox is empty (0). Each child process does
the same. Once a process can read its neighbor’s mailbox, it places the number in its own
mailbox for another process to read. When the parent receives the number, it prints the

value. Each process prints the PID of the process which will read the number next.

This program shows that not only can a shared variable be used to pass information, but

that it can be the foundation for synchronization (the busy-waits).

67

R R T SRR S B S T
e . -
O L

N T

PRIt A, BeP Ry S N BB SR, E ST AT

..'.: " : "\""’—Y‘)

=7

L N T Y T W XA 2R TN
AL

&'l

5o,

v Y ¥

54 4

RN A
sttt
)

b ati et a"t OO UK R RO UN W LY DR VW R R XS W 2RI NN TR TATAY ANEVR . At e g v

g

.
’
~J
A"
-~
»
in
3
¥
o
Jrsessessrrsensns/ »l
/+ Example 23 s/ :'
/* Moilboxes ./)
Jrssssnansesrarree/ <
#include <stdio.h> -
#incliude <poraliel/microtask.h> e
#inciude <paratiel/paraiiel . h>
$define NPROCS 3)
shared int mbox[NPROCS]:
/* Each process runs this routine. The node (process) will pass »/ ;ﬁ
/* the Cord by plocing it in its mailbox. Each Node will read s/ -
/e the card from the mailbox on its left. Node © which is */ Ny
/* actually the parent process, starts by reading in the card to ¢/ -~
/" pass around the circie. ./ ;
/* Synchronization is accomplished by each Node busy-waiting s/
/* until its neighbor's mailbox is not empty. o/ rﬁ
nodes () Y
i h
int card; 5’
int my_node, neighbor, next_node; ;
my_node = m_get_myid (); /* get my process id s/ ;i
neighbor = (my_node + (NPROCS - 1)) % NPROCS; /+ who is my neighbor «/ g
next_node = (my_node + 1) % NPROCS,; /* who reads my mailbox »/ ~
fe,]
if (my_node == @) ﬁ‘
printf ("Enter the Cord to Pass (1-10): "); 1
scanf ("%4d", &card); !
printf (“\nCord to pass is %d\n", card); :n
fflush (stdout);)
P
/% Plaoce card in my mailbox for my neighbor to read s/ i‘
-
“
printf (“Node %d passes %d to Node %d\n", my_node, card, next_node); Lay
fflush (stdout):)
mbox[my_node] = cord; g
H&
.-
while (mbox{neighbor] == @) ; /+ Busy-Wait until caord is in mailbox +/ :5
e
. ”
/+ Read mailbox and print card =/ f:
’l<
printf ("\n\nCord Passed through Ail Nodes, Returned value is %d\n",)
mbox[neighbor]):)
fflush (stdout): .
} <
eise § /» if 1 am not the parent process o/ ;f
e
wh.le (mbox[neighbor] == @) ; /¢« Busy-Wait until mailbox not empty o/ "
]
printf (“Node %d posses %d to Node %d\n"., my_node, mbox[neighbor], F:.
next_node), ‘9
ffiush (stdout). ;\
i
mbox[my_node] = mbox[neighbor]; :x
‘ it
¢ »
I
/* This is the main process It starts the nodes arnc krills them after o/ >
/» they have finished ./ ?\
N
moin () Lo
{)
L4
”
?,
“{I;fﬂfngJNI\f\f\J ~ u>\}n}n; } }usif

L PLd

D

A

¥

»

QIS AR Y

ups, 4 BaR a9 0 p: 0t Y St
int i;
for (i=08; i < NPROCS; i++)
mbox[i] = ©;
}
m_set_procs (NPROCS); /[
m_fork (nodes): /*
m_kill_procs () /e
{
Enter the Card to Pass (1-10)

Card to pass is 5

Node © passes 5 to Node 1
Node 1 paosses 5 to Node 2
Node 2 posses 5 to Node @

Cord Passed through All Nodes
o T e T A T aE AT A" a
I NN s

403 908" Sob Mat L TN T TR '\."‘

H /* initialize boxes ¢/
set number of players »/
start the game o/
game is over s/

r

Returned value is 5

.
W
()
A]
Al

o o

AT R T,

b et

N LSRN AT A A e "-.' -.:,-.'\" AR T HINE N E S LR
! O aX of N M ¥ i e,

~

%
»

» 9

AL R AR AL ST

TP

Z

v TR,

REFL R
[t Yk SN

P2

r'{’{f -
A L &

I

YNl

S T T g0
LA

hY

O Ay g

L 0% 4

AL
\ .

NRELPARAN,

- =

47
-

.ﬂ el -".f, 2y

’
;,‘flz

4 Cobegin—-Coend Implementation

Section 3 introduced both the fork and m_fork routines and demonstrated how each is
used for process creation. The fork, exit, and wait routines, when used together, provide
for process creation, termination, and synchronization. The problem with these routines
is that they can become confusing to the programmer. Omission and commission errors
are also a threat. The m_fork routine is a higher level process creation mechanism. It
names the specific routine to be placed in execution and provides for process termination.
However, m_fork can only create a limited number of processes (the number of available
processors minus one) and each process will execute the same routine. This is satisfactory

since m_fork was designed for data partitioning.

We require a mechanism which will allow a programmer to create as many processes as
the operating system allows. This mechanism should also allow the processes to execute
different sections of code to support both data partitioning and functional partitioning.
Each of these requirements are met by the construct “cobegin-coend”. A cobegin—coend
construct is a block of code which is a structured method of creating processes. The
cobegin-coend structure was derived from Dijkstra’s “Parbegin-Parend” construct. The
syntax and semantics of the cobegin—coend are as follows.
cobegin
statement 1
statement 2

statement 3

statement N

coend

Each statement within the cobegin—coend block is executed concurrently and may be any
valid C statement including function calls or block statements. The execution of code after
the cobegin—-coend block will not proceed until every statement within the cobegin-coend
block has terminated. The cobegin-coend automatically provides for process creation
and termination while retaining much of the flexibility of the fork routine. This higher
level construct allows programmers to easily siructure concurrent programs. A reader of
a program containing this construct can clearly identify all tasks marked for concurrent
execution. Also, this construct is structured (one way in and one way out) and can easily

be nested. However, the cobegin-coend is not all powerful. Its major weakness is that it

70

R AR

AT T

T, N A TY N RN
! <

.
\l\--

AN AT AT AL T
AR R

S PR s A AR AN TR Sl Nat tai ek eay nag ol gl <Al v abitag Tat il sat “ah "pla- ‘ava gho gty 4 ia 890 52 0Va §'2 0% Bt

can not handle dynamic applications. For example, an application which does not know :'
how many separate processes it requires until run time. .
’
]
A
4.1 Precompiler Logic :: ,
~
A precompiler was written to implement the cobegin-coend construct. The precompiler ny
was written in C and prepares a C program which contains cobegin—coend blocks for the C jé:
compiler. The function of the precompiler is to find cobegin—coend blocks and to transform y
each block into a set of routines which provide for process creation, termination, and <
synchronization. The fork, exit, and wait routines are used to provide this functionality. .
Each of these routines is found in Unix, as well as DYNIX, which adds to the portability E

3

of the precompiler. The effect of the precompiler generated code is that each statement
within the cobegin—coend block will be forked by the parent process and executed by a
child process (process creation). After executing a statement. each child process will exit
(process termination). At the end of the cobegin—coend block, the parent will call the wait

routine for each child created (process synchronization). An example of the generated code

T e ;’ ’:._"7- ST ‘.:,' Yo ‘-:I" :5'5'

follows:
Before Precompilation After Precompilation Y
cobegin pid = fork (); ‘
statement 1 if (pid != 0) f
statement 2 pidarray|{jj+-+] = pid;
coend if (pid ==
statement 1 S
exit (0); } .
pid = fork (); ;
if (pid !'= 0) »
p]darray[JJ+ = pid; e
if (pid == 0) { Vo
statement 2 .
exit (0) } ';t‘\
for (ii=0; 11<2; ii++) {
pid = wait (&status); -
if (status) { oy
=0 .
while (pid != pidarray(jj}) x
i+
prlntf (“Error on Stmt %d in cobegin block”, jj); 5
} 3
7)
L
3
!‘
‘

\ 'l ’- .f'(".'.",f' 3 '- PIC N uf “» ., .’ "I‘ [/ '\-'. /‘. " '\('"‘ « LTS ‘-rﬂf*" O R AT T g "\fv-"-~'\f\r'(..'fN{ ‘,\\’ * -J.‘\-
~ L) L N L)

vy

L - wg v, i""h"."" ...-,v‘-'-‘- 08’ aBa ‘.‘_ °a0p" W W * dan .J 5 UAT. §ab. .t !’l v b'!l i J Be’ $2¢ 0g® Bat g

-

The code generated after precompilation shows that a fork was performed for each state-

ment. If the PID (process id) is not zero (designating the parent), add the PID to an array
X of PIDs. If the PID is zero (designating the child), execute the statement and then exit.
At the end of the cobegin-coend block, the parent performs a wait for each child. The
‘ parent tests the status of the terminating child and will print an error message if the child
‘ terminated with an error code. The error message contains the statement number of the
) statement the child executed relative to the beginning of the cobegin-coend block. The
h reason for printing this error message is to aid the programmer in debugging a program in

a concurrent environment. The array pidarray and the integers ii, jj, and pid are inserted
g for the programmer in order to keep the implementation of the cobegin-coend construct

transparent. Notice that the parent process creates a child for each statement and does

k not execute one of the statements itself. This decision was for simplicity. The precompiler
T

} would need to read the source code twice or would need to store: full statements in memory
. in order to allow the parent process to execute one of the statements. This is because the

precompiler reads one line at a time and has no look ahead capability. The precompiler

can not predict the length of a statement.

Appendix A contains the source code for the precompiler. The function of the precompiler
is simple. The most difficult aspect of the precompiler is the recognition and separation of
E C statements. The statement within the cobegin—coend block can be any valid C statement
: including blocks of code such as for, while, and do statements. A stack is used to separate
the statements within the cobegin-coend block. A user may invoke the precompiler by the
command cobegin filename. The precompiler will first check to see that the user has entered
| the filename of a C source file. It then attempts to open the file and to create two more
4 files, a new source file, and a trace file. The new source file will contain the program code
3 after precompilation. The trace file will contain a trace of all stack operations performed
by the precompiler. The names of these two files are based on the name of the original
source file. If the original source file’s name is xxxx.c, the new source file will be named
XxXxxp.c, and the trace file will be named xxxxt.d. The trace file will only be retained if

a an error occurs during precompilation.

N The precompiler allows up to six source files to be entered by the user at a time. The
purpose of the “main” routine is to read the command line arguments and to create a
process for each entered file. The “main” routine calls the function “find_block” for each

file entered. “find_block” creates and opens all required files and begins a search for any

cobegin-coend block in the source file. The keywords “cobegin” and “coend” designate a
-
Y ‘2 ~
v "
: AL L L PR P LI L IS L LR » i I R e i i I I I Y S AP Pt IR T I e R I I e L L PP T A --*.--':
N L R Y et R 0 YA I, T o R, WA 1 v e s U T D A D TR AV P TR SR WA G RGR

AP N

H I
5

o Bty)

e
~

PN R

7”:{4

—

-' . l-.l-i

o s s

AR TR ARAR,

~

LT s’ Yo vag wap #af K/

cobegin—coend block and each must be in lower case and on a line by themselves. These
requirements do not effect the programmer and ease the search for the cobegin-coend
blocks. “find_block” will call the function “forkstmts” for each cobegin-coend block found.
“find_block” will also insert the declarations for the variables ii, jj, pid, and pidarray. These
variables are placed outside the source’s “main” routine. This was done because the “main”
routine is easy to find and every C program must have this routine. The precompiler
supports separate compilation since only routines which contain cobegin—coend blocks need

to be precompiled. However, the “main” routine must always be precompiled. “find_block”

will close all files after the source program has been precompiled.

The function “forkstmts” is the heart of the precompiler. lts function is to separate the
statements of the cobegin—coend block and to call the appropriate functions for inserting
any required code. The functions “prforks”, “prwaits”, and “printexit” are used to insert
the required calls to fork, wait, and exit respectively. At the beginning of each statement,
“forkstmts” calls the function ”priorks”. The function ”printexit” is called when the end of
a statement is found. The function "prwaits” is called when the end of the cobegin-coend
block is found. “forkstmts” first initializes the stack by placing a semicolon on its top.
It is initially assumed that the end of each statement will be a semicolon. The logic of

separating the C statements is as follows:

1. Whenever a symbol is found which matches the top of the stack, pop the stack. The only
symbols which are screened by “forkstmts” are quotes, semicolons, left parenthesis, right

parenthesis, {, and }.

2. Between each statement, “forkstmts” will search for the keyword “coend”. This marks the
end of the cobegin—coend block and “forkstmts” will return. If the keyword “cobegin” is
found an error is printed and “forkstmts” will return with an error. A new cobegin-coend

block as a statement within a cobegin—-coend block has no meaning.

3. Newline characters are always recognized. The precompiler reads the old source file one
line at a time. The current line is printed to the new source file and a new line is read

from the old source file on each newline character.

4. If the quote symbol is found within a statement, ignore every syml ol except newline

characters until another quote symbol is found.

5. If a semicolon symbol is found and the top of the stack is a semicolon, then pop the stack.

73

v el B R - ke e e A " . 3 . . Y .
e ! L S L AL Y Nl S BT T T N M T N T W e W XN W

ERE P S Pt

-

BIEL LA AT BN NRII T f Y, 0
- ", Ta LS -~ .

AT T

. -
'«

"
’

Sy et Ce e

-%' ‘I ..“ ’

< f{ft‘t'r. M

. yte
Vv

VRN Y Y

-1

~ . R F e T .
v A PR P Lol Pa I S AR N S
N i ik, {'.’ Aol 'n"n M» P .V':'q .‘!’;’- ,.'- l-' !\ SRS

If the stack is empty, the end of the statement has been found.

. If a left parenthesis symbol is found and the top of the stack is either a right parenthesis

or a semicolon, push a right parenthesis symbol on the stack.

. If a right parenthesis symbol is found and the top of the stack is a right parenthesis, pop
the stack.

. If a do while loop is found at the beginning of a statement, turn on the flag “dostmt”. The

reason for this flag will become apparent shortly.

. If a { symbol is found and the top of the stack is a semicolon and dostmt is FALSE, pop
the stack and push a } symbol on the stack. In the case of dostmt being TRUE, do not pop
the stack and just push on the symbol }. The reason for this is thal a do while statement
ends in a semicolon symbol, but contains a { } block. If a { is found and the top of the

stack is a }, push a } symbol on the stack.

. If a } symbol is found and the top of the stack is a }, pop the stack and check for empty
stack. If the stack is empty, the end of the statement has been found.

. If the keyword “cobegin” is found within a statement, then push the symbol & on the stack
and call “forkstmts” recursively. The & symbol is called a stack separator and is used to
designate the empty stack. The stack separator is used to separate different segments of the
stack which reflect different cobegin-coend blocks. This allows programmers to correctly

nest cobegin—coend blocks.

An important aspect of the precompiler is that it expects to receive a syntactically correct
C program. If the syntax of the C source file is incorrect, the results of the precompiler can
not be predicted. Any programmer using the precompiler, should first comment out the
keywords “cobegin” and “coend” and try to compile the source code. This will inform the
programmer if his source code is syntactically correct. The precompiler also attempts to
produce structured code. When the precompiler finds a cobegin-coend block, it remembers
the column number where the keyword “cobegin” was found. All inserted code is then
blocked relative to this column number. Thus, if the precompiler receives a structured
program, it will produce a structured program. Also remember that the variable names ii,
iJs pid, and pidarray are reserved when using the precompiler. If these names are used in

the program, problems could occur.

i VM DA A R0 e ® Sat e Seb e B Bf

SR

G- Ry B XXy

T i g J
I"l‘

..,Q
<

po

f(‘-"'
AN "

Y

R
.)

PN Al

oA,

e

i~

-

..,,.
i

R A

L T
N . .

'. ‘.. .‘I "l L
N

.
DN

Y

LR T Y 00 el Sa) St 5 4 200 o 00 008 it tf ' o g’ e T At e

2 4 \ A Sl Aol ~ A RO AN ROAEA A AEALA RALS
KX
]
»
i
"]
4.2 Examples of Cobegin—-Coend e
"
24
This section presents a number of examples which will aid the reader in understanding ’
the functionality of the cobegin—coend construct. Each example is very simple. The first :::
four examples illustrate the implementation of the precompiler. Each of these examples :
presents the new source code after precompilation. These examples are also void of any)
synchronization between child processes. Again these examples are meant to show the
functionality of the cobegin-coend not synchronization primitives. The last examples ;
. . . . -’
present some of the classic problems of concurrent environments written in C using the o
cobegin—coend construct. oy
)
4.2.1 Function Calls b
oy
Example 24a is composed of two routines which share an array of counters. The main :5
routine wishes to increment each counter by ten, concurrently. The main routine first ;*"
initializes each counter and then calls the function “add” for each counter. The function o
“add” accepts an index into the array of shared counters and the value to add to a counter. o
The main routine calls “add” within a cobegin—coend block. This ensures that every call N2
Ky
to “add” is made concurrently. Example 24b shows the changes made to the source code ;’
by the precompiler. The syntax and semantics of the code are as described in sectior 4.1. A
~Y
Notice that the array “pidarray” and the integers 1i, jj, and pid are placed before the main \
routine. The array size is set to 25 because that is the maximum number of processes any :'.
one user can create on the current system at one time. This value can easily be changed w
in the precompiler function “find_block”. Also notice that the appearance of the inserted -
code is in a structured format. In this example, it would have been just as easy to perform Ny
Y
the two statements of the “add” function in a block of code within the cobegin-coend S
block. However, these examples are not presenting realistic situations, but are only meant e
)
to show functionality. >
'
e
v
o
N,
oy
a
Y
75 i
‘.
S
~
AR T A A Ul W W I N O i W TR N TR N WA VAR P SR A et T AT R T A T T T T T AT N T A AT A TR T T T T a - LW - N
e e e

0.8 08 08 62 %2 4 v ‘Bl aba” Yol ¢, Bl b B . . - n RS e e —
B0 R R el i ey T e e - o e e R R O T A G XK

e =Y

- \J
Jfeoresessrenesenen/ .:
/e Example 240 o/
/‘.“..‘.'.“...“/ '
#include <stdio.h> ;
. v
/* This program increments an array of counters. The function s/ *@
/* "add" receives an index into the array of counters and the =/ &‘
/¢« amount to add to thot counter. The moin routine ./ ‘~B
/e initializes each counter to zerc and then adds 19 to each ./ S
/* counter concurrentiy using a cobegin - coend block. o/
shored int count[5]; /* array of counters s/ :'
A
add (i, n) Y
int i, n; i'
i -
A
count[i] = count[i] + n; R
printf ("Counter %d is now %d\n", i, count[i]); N¢
H Y
main () ;ﬁ
int i;)
I,
for (i = 9: i < 5; i++4) 9
count{i] = o; *‘
setbuf (stdout, NULL); /* no output buffer s/ té
Y
/+ «add 10 to each counter concurrently s/ N
)
cobegin o~
add (G, 10), v
y add (1, 10); .
add (2, 190); 5
add (3, 10); ,
odd (4, 10); o
coend L‘
printf ("Everyone is done\n"); ;:
t 5
.
4
+
'-f'
'
&
?
4
»
)
]
.;:
‘r
s
iy
A
<
4
:J‘
L]
',
I
I*
- - - - -

T Y s e T AU s VR S L R T R N R e T Ry B O N N
- - ~ S B - -, B A 'l O i ol 0 - A A . . B * L) 5 o o Iy g ' » 0 5 . < N e o 3 B .

.J‘. L oM AL 58 ¥ l. (\. '(. \& - l."\. X .. .','.,'- .'V.)' _ M " o - -l u » " ~ Jn. YR .,- h) .- V- r R AV vy YR NN ET R -
| . N
L] (
, -
2 .
s - "
: foeresrssanvnnenns/ S
/+ Exomple 24b =/ b
ARE R E R R
1
P #include <stdio.h> :
& [¥
N /% This program increments an array of counters. The function =/ r
4 /* “add" receives an index into the array of counters and the o/ ;
P /* amount to add to that counter. The moin routine ./ J
’ /* initiaclizes each counter to zero ond then odds 10 to eocch o/)
/+ counter concurrently using a cobegin — coend block. s/
I“
» shared int count[5]; /* orray of counters s/ ?(
g add (i, n) .
b int i, n; R
§ .
'.
) count[i] = count[i] + n; ™
: ; printf ("Counter %d is now %d\n", i, count[i]): ;
1, L]
7' .
\ int pidarroy([25]; :
int staotus, pid, i -
- static int jj; = §1}: B}
. moin () ;
5 | e
o, int i, 4
% A
;- for (i = @; i < 5; i++) o
count[i] = @ e
” setbuf (stdout, NULL); /* no output buffer o/ .
v /+« add 1@ to each counter concurrently s/ -
A <
pid = fork (): Ny
" if (pid t= @) 3
~ pidarray[jj++] = pid; ~
if (pid == @)
. add (e, 1¢); ;
N exit (0): } X
pid = fork () ;'
if (pid '= @) -
: pidarray[jj++] = pid: -}
if (pid == @))
add (1, 10):
; exit (@), {
pid = fork (),
v if (pid '= @)
: prdarray[jj++] = pid;
» it (pid == ©) |
- edd (2, 10);
exi1t (@), b
.: prd = fork (), -
- 1 f (pid '= @) .:
:: prdarray[;;++4] = pic "
n vt (pr1d == 0) } o
. add (2. 10, . 9
- exit (@) ¢ o
pid = tork (1
N it wpid = 0
prdarray[) ++] = pre R
Y b (prd == @) 3 :
$ cdd (4. 10, o
ex t (@) { "l
] for {10 = @, 1 < 5. 1144 H .-
; prd = wat (&s*atus).)
’,
. . - PR Y L I R e T T L e AT - . LY ” - el e e w
I A A T IR S RO A AT AT SO AT N TN I ST NN T NI AT AN

R
1)
»
'
s
&
f
k.
Pd
.
7
(l
'
1Y
'
1
o
[d
((
by
]
;
r’
¢
&
rl
3
!
7
[
»
"
X
le
¢
-
.'
-
f
-
!

»
ATATRE b &
ot

e

o« .\'ﬂr' .
. &

U

if (stotus)
jji = o
while (pid !'= pidorroy[j}])
ji++.
printf ("Error on Stmt %d in cobegin block\n",jj);

\

printf (“"Everyone is done\n");

AL

v M

PP

?‘

e
> (“{

L TR Y)
4 14 " e

-

eSS W

~f,‘/\' NN

f:'l'l'n’f o

CRNANAAS Y
Iy

.'l'l}‘-}:/l w -

P

P

1w .

f.. -.l. 'l" l{

AN

l".
N
.3\
A
‘.\-
ALY
)
‘™~
)
-.l
'-..-..'.-$.\-.'-\-~-~.'.M-'-_-,_v '\'\' LI) ('-'-.
P ACR N AN AT N N TSN AT AT S DTN

-

T

T T T e A g A oM A A R) R o

-
Sl

o

Ty T e sy T s L A N T T L TR R A A A P RO SR

4.2.2 Blocks of Code

Example 25a shows the exact same program shown in example 24a. However, counter 2 will
be incremented three times and counter 3 will incremented twice. Again the function “add”
accepts the index of the counter and the value to add to the counter. Notice that the block
symbols { and } are placed around all the calls to “add” for counter 2 and counter 3. These
two blocks of code will be executed concurrently with every other statement in the cobegin—
coend block. However, each call within these two blocks are executed sequentially. In this
example, no synchronization mechanisms are needed for mutual exclusion since multiple
adds on a specific counter are executed sequentially. The blocking of code is important to
the cobegin—coend construct becausc it allows the declaration of local variables and allows
the programmer the ability to perform some sequential execution within the cobegin-coend
block. Of course calling a function within the cobegin-coend block has the same result,
but with the overhead of a function call. Example 25b shows the precompiler output
for example 25a. Notice that for each block statement, the precompiler still generated
enclosing brackets for the child process. Both pairs of { } are not needed. Both pairs of

brackets were retained for simplicity to the precompiler.

-

S XA AR SRR LS

-

AL

PR XA

M. ‘.

o .

-8 &

s T AR

Al P 4 P A A s

h

ST T s ey
- o

AR

L 3

g e e

g

[TV) ‘&'Q"' .. 1" 90° 2t et e LT X AT V00 .0 000 det 8 8 Sal $ad" Y ol v y oal Sat nab talag iad Al Sal o sal o Sake gag gt BYa gla N

- - Y - - - - -
-l
. ",
Y
l.
]
I.{
V]
o
- A
Jresesssnsnsssssens/ "/
/* Example 25a s/ hut
[Jretssessearrosans/ »
)
#include <stdio.h> f{
o
/* This program increments an array of counters. The function =/ .$‘
/* "odd" receives an index into the array of counters and the s/ 1Y
/+ amount to add to that counter. The main routine o/ o
/* initializes each counter to zero and then adds 19 to o/
/s <counters ©, 1, and 4. The main routine adds 30 to counter o/ N
/* 2 in increments of 10 ond adds 22 to counter 3 in s/ -4
/e increments of 10. Counters 2 ond 3 are incremented s/)
/* sequentially by using the symbols § and } to block the o/ o
/* code. 4 o
. »
shared int count[5]; /* oarray of counters s/
iyt
add (i. n) I
. . X
int i, n; .3
{ o
o
W
count[i] = count[i] + n; :
printf ("Counter %d is now %d\n", i, count[i]); R,
{
main () ljﬂ
int i; {?
for (i = @; i < 5: i++) !;‘
count[i] = @; -
setbuf (stdout, NULL); /* no output buffer s/
/* Increment each buffer concurrently s/ E t
. Y.
cobegin .
odd (0, 1@). !
odd (1, 10); A
{ odd (2, 10); Q:
odd (2. 10); :.i*
add (2, 10); } fa
§ add (3. 10); .'.
add (3, 190); 1} s
odd (4, 10); !_
coend v
-'\
printf (“"Everyone is done\n");: i&
} '
]
1 3
-~
-.:‘
=
o
A
N
’\\
»
o
l\.
s
A
N
I
’
T,
N
»
N
,
»
N

-

100 0k A 0% 85 A% dta A tac At tha" Matatatat, - ot «al & ., i MTOWY g i g " N o)
PN 7 AU SO0 '~ S 000 0% 050 4 a 0% A% aRTa0 Se e SUA ALY SR L SoA, S el Sl Sl Suh WIS A S A N A AR A A v g pou a it A0 R

e -

T

P

N [esossasssnsrsnnes/
/* Example 25b +/
Jeseressnnsenernes/
#include <stdio.h>
/¢« This program increments an array of counters. The function s/
/* "add"” receives an index into the array of counters and the o/
/% amount to add to that counter. The main routine o/
/* initializes each counter to zero and then adds 10 to o/
) /e counters @, 1, and 4. The main routine odds 39 to counter ./
\ /* 2 in increments of 10 ond adds 20 to counter 3 in 4
/* increments of 18. Counters 2 and 2 are incremented s/
/% sequentially by using the symbols § and { to block the s/
/* code. s/
shared int count{5]; /* array of counters s/
add (i, n)
int i, n;
{
count[i] = count{[i] + n;
y printf (“Counter %d is now %d\n”, i, count[il]);

int pidarroy[25]);

int status, pid, ii;
static int jj = {1};
main ()
{

int i;

for (i = @; i <
count[i] = 0;
setbuf (stdout, NULL); /* no output buffer s/

5; i++)

. /* Increment eoch buffer concurrentiy o/
W

pid = fork ();
if (pid != @)
pidarray[jj++] = pid;

if (pid == 0)
) add (@, 19);
exit (@) {
. pid = fork ():
g if (pid i= @)
. pidarray(jj++] = pid;
if (pid == @) |

A add (1, 10);
. exit (0). }
pid = fork ():
X if (pid '= @)
; pidarray[jj++] = pid:
: if (pird == 0) §

{ add (2, 19,
add (2, 1@},
add (2. 1), }

exi1t (@), {

pid = fork ().
f (pid ‘= 0)
pidarray{)j++] = pid,

1 f (prd == @) }
} odd (3, 190}
add (3, 10}. |
exit (0). §

LS LS - \- o~ TN A N T \- " ..'..'~ " . ..'..'- R R LS .~ R T N DN A T et et AP Y -~ -
A A O Ty S o " g o - . cadhuis

pid = fork ():
it (pid !'= @)
pidarray[jj++] = pid;
if (pid == 0)
add (4. 10);
exit (0); 1}
for (ii = @; 1i < 5; ii++)
pid = wait (&status);
if (status)
jj = @,
white (pid != pidarroy[jj])
jij++s
printf ("Error on Stmt %d in cobegin block\n",jj);

}

printf ("Everyone is done\n");

N
~
",
~
Nl
.I
-

PRl SR P

o

T R R T R e Y R RV G A A A N N R T TN TR T S G AR R R R C R RN AT SR E AR

4.2.3 Block Statements

Example 26a is a mild change to example 24a. In this example, each counter is incremented
ten times by calling “add” ten times. Each time the function “add” increments the counter
by ten. In the cobegin—coend block a for loop is placed around each call to “add”. This
does not mean that 50 processes are created, but that five processes are created, each of
which executes one of the for loops. Again, this example certainly is not the most effective
method for incrementing these loops. It would be best to bypass the ten function calls for
each process. Example 26b contains the precompiler output for example 26a. Notice that
each entire for loop is contained in a block of code to be executed by a child process. The

Jor loops could have been different sizes.

83

Tt T e e e e e e e e e T L N e e N e L Pt e %
W IS PSRN N PPN PP A MBI TN

T
Ja® ot al'g

Jorsrsasrssssnnnsn/

/* Example 26a s/

/osranannssrnrnns/

#incltude <stdio.h>

/* This program increments an array of count
/* "add" receives an index into the array of
/* amount to add to that counter. The main

8- 08" B0y 600 4%0 g i gbe gl gl

ers. The function
counters and the
routine

YA initializes each counter to zZero and then adds 10@ to each
/% counter concurrently using o cobegin - coend block.
/* FEach counter is incremented to 120 by 10s.

. shared int count[5]; /* array of counters =/
L add (i, n)
int &, n;
; {
1
count[i] = count[i] + n;
printf ("Counter %d is now %d\n", i, count[i]);
| H
moin ()
i
int i,
for (i = @; i < 5; i++)
count{i] = o;
: setbuf (stdout, NULL); /* no output buffer «/
. /+ add 100 to each counter concurrently »/
!
) cobegin
L) for (i = @, i < 10; i++)
add (@ 19);
for (i = 0, i < 10; i++)
cdd (1 10);
for (i = @, i < 19; i++)
] add (2, 1@);
for (1 = @. i < 1Q; i++)
aodd (2. 10)
4 for (+ = 0 < 10, i++)
| odd (4 te),
coend

printf ("Everyone i1s done\n"),;

oL P -
R

\
*/
+/
+/
*/
s/

w0 ‘\,_'r\f‘f\.f_-'_.l.‘f_-(\-',‘ AR ARG (N0 R L L T s Tt O T
. e BV LTS AN VT N b - Rt Bl ol h Bl N WY,

- - . - -)
DT D Sty

N AR T T Te TR T S caYy

'} \- l: .'- .

s
o By

[eresvsss0s0snras/
/* Example 26b =/
/.0‘.!.'.“"...‘/
#include <stdio.h>
/* This program increments an array of counters. The function »/
/["add" receives an index into the array of counters and the o/
/+ amount to odd to that counter. The main routine ./
/e initializes each counter to zero and then adds 100 to each +/
/* counter concurrentiy using a cobegin ~ coend block. s/
/* Each counter is incremented to 100 by 10s. ./ ﬁ
shored int count[5]; /* array of counters s/ :‘
add (i, n) o
int i, n;]
{ »
count[i] = count[i] + n;
printf ("Counter %d is now %d\n", i, count[i]);
} A
int pidarroy[25]; L)
int stotus, pid. ii; »
static int jj = §1%; i)
main () =)
3 ?,
int i 3:
o~
for (i = @; i < 5: i++) X
count[i] = ©; »
setbuf (stdout, NULL); /* no output buffer o/ 3;
/s add 1@@ to each counter concurrently s/ S:
pid = fork (). ﬁ,
it (pid '= @)
pidarray[jj++] = pid;
if (pid == @) }
for (= @, i < 10; i++)
ada (@, 19),.
exit (0),; {
pid = fork () !
if (pid '= @) .
pidarray[jj++] = pid; »
if (pid == 0) -
for (i = @; i < 10, i++) <
add (1, 1@); I:"
exit (0); } N
pid = fork (); :"".
if (pid '= @) o
pidaorroy[jj++] = pid; ,
tf (pi1d == 0) o
for (i = @, i < 1@; i++) D
add (2. 10).)
ex 1t (@) $::-:
p.d = fork (). -
t (pid '= Q) {?
prdarray[jj++] = pid. »
vt (p.d == 0
for (. = ©, < 18 i+44) :~:‘
odd (3. 10}, j{
ex:it (@), { e
grd = tork (), :":
vyt (prd ' = } J:.‘
pidarroy[jy++] = prd. »
a
R

¥

4.2.4 Nesting Cobegin Blocks

Example 27a illustrates the programmer’s capability to nest cobegin—coend blocks. In this
example, each of the five counters are to be incremented by different values. Counters 0,
1, and 2 are to incremented until their combined values exceeds 110. Counters 3 and 4
are to be incremented until their combined values exceed 75. Notice that two independent
while loops are used to test and increment the two sets of counters. These two loops
are independent and can execute concurrently. Thus, they are placed within a cobegin-
coend block. Also notice that each call to “add” is independent and can be executed
concurrently with every other add operation. Thus, each call to “add” within each while
loop is also placed within a cobegin—coend block. Each cobegin-coend block within a while
loop provides the synchronization needed by the loop te check the totals of each counter
set. Example 27b contains the source code produced by the precompiler for example 27a.
The first child process executes the while loop containing counters 0, 1, and 2. Also, three
child processes are created within the while loop, one for each counter. Notice that a

structured appearance is maintained.

i ol T e - A ai
AHA L L Sl Suh gl o b oall salt O 0 Sl s SuiTi AR R A" b i T 0 1o AR R e N
l.-

N

)
, A
s
N
if (pid == 0) { z
for (i = @; i < 1@; i++) N
add (4, 19); -
exit (0); H '
for (ii = @; ii < 5; ii++) g,
pid = woit (&status); }

ol

if (status) §
ii =9
while (pid != pidarray{jj]))
Jj++s
printf (“"Error on Stmt %d in cobegin block\n" jj);

53, 8

}

printf ("Everyone is done\n”);

F-2

(T INK

-

*d ‘.’ ot R

¥

{{y##c'

LRSS ¢

"o

AL T T

e

»

e '."—l'[
A e

¢ 8)

e

N AL Lot R

K 3\ [AN NPT P N P L AN PR o R D AN T o S e A U S S S R Y SR B N LRI ca e

O SN NS S T R R R A NN N AR R SR AR -_-_-_.,-_-: A e T

J,:-.,. o .‘ d .. ' \ h' ,.. _‘ A 9 -‘ g - ; .. ».' .‘ - d - .‘ - L3 ! - » s .A,R. 2°0 ' Mos) . |8 \/ .. N - 2 - - ’ 2 » - - » -y -A J _‘ ‘ :
' ' -
3 .
2]
4
P
\ - -~
: Jresossssserersesn/ -
[/* Exampie 27qa o/
/‘ TS B SE ISP ISEESDN ‘/
sy
' X
#include <stdio.h>
¥ Y
: /* This program increments an array of counters. The function =/ N'
1 /* "add" receives on index into the array of counters and the ¢/ LS
! /* amount to add to the counter. The main routine increments ¢/ .
/* counters @, 1, and 2 until their values add up to more than s/
/* 11@. It increments counters 3 and 4 until their values odd «/ "
; /*» up to more than 75. Eoch addition of o counter :s done v/ 3
A » concurren . is progrom iltlustrates nesting of cobegin »
thy Thi it t ting of gi
¢ /* biocks. s/ *
5]
t
3 shared int count[5]); /+ array of counters o/ N,
R add (i, n) 8,
1 int i, n; A
1 i)
¢
! , , .
1 count[i] = count{i] + n; a
: printf ("Counter %d is now %d\n", i, count[i]): b
§ .
. ‘
. main () c
i 3
int i; L
_ b
¥ for (i =0; i < 5; i++) {
y count[i] = @;
setbuf (stdout, NULL); /* no output buffer o/ o
; /* Increment counters concurrently =/ X
' l--
: cobegin -
. while (count[@] + count[1] + count[2] < 110@) :
B cobegin
add (@, 7). ,;
1 add (1. 10); 5
\ add (2, 15); LS
R .A
! coend 5
i } \
W white (count[3] + count[4] < 75) { N
‘ cobegin)
_ add (3, 10); -
) add (4, 1@): “a
Y coend 4
I ; - 5
N coend >
¢ printf ("Counters @,1, and 2 odded equal %d\n", count[0]+count[1]+count[2]):
printf ("Counter 3 ond 4 odded equal %d\n", count[3]+count[4]); ;
\ i o
&
by g
‘M
.
» .
-
\ N
) 4
' .
X -
! N
' ~
v. ~
-
i} ~
\ "
‘ L-') -‘,"‘! L) -.u NI '_,"..“. » ..’-f\ e RO l_‘('lf.. LSy n"'-,’-_’ e N ,.'. LR N A Y '\ " \ ATV ',

“ .
: Jvevsesessessnsss/
D /* Examplie 27b s/
Jesesssessensnnse/
! finclude <stdio.h>
[
) /* This program increments an array of counters. The function
/* "add" receives an index into the arraoy of counters and the
'y /s amount to add to the counter. The main routine increments
/e counters ©, 1, and 2 until their values aodd up to more than
) /e 110. It increments counters 3 ond 4 until their values add
h /* up to more than 75. Each addition of a counter is done
3: /» concurrently. This program illustrates nesting of cobegin
: /* blocks.
shared int count[5]); /* array of counters s/
add (i, n)
3 int i, n;
¢ ¢
L)
. count[i] = count[i] + n;
k printf ("Counter %d is now %d\n", i, count[i]);
§
= int pidarray[25];
. int status, pid, ii;
y staotic int jj = §1%;
. main ()
Y {
int i;
‘
' for (i = 8; i < 5; i++)
count[i] = ©;
setbuf (stdout, NULL); /* no outlput buffer =/
/e Increment counters concurrently =/
pid = fork ():
if (pid !'= @)
pidarroy[jj++] = pid;
if (pid == @) |
while (countf[@] + count[1] + count[2] < 110) }
pid = fork ()
if (pid != 0)
pidarray[jj++] = pid;
| if (pid == @)
; add (e, 7);
. exit (@);
; pid = fork ():
. i1t (pid !'= @)
’ pidarray[jj++] = pid;
if (pid == @)
: add (1, 10);
? exit (0); {
\ pid = fork (});
it (pid t= @)
pidarray[jj++]} = pid
if (pid == @)
add (2. 15),
exit (0); §
! for (ii = @; 1i < 3. ii++) H
. prd = wait (&stotus).
if (stotus)
3 ji = e,
while (pid '= pidarray[jj]))
IBAE
)
A N O N N G g B s T T N R T R TP 1 g A R gy N R N et Ny

+/
*/
*/
*/
+/
4
v/
o/

-{ w.., o -“-,:'. -

-._..‘_-. - 'J"."‘"'ﬁ'

N e e)

A

!,'.‘('l‘_l'l [

’
!

o “, e

bS50

,

T

IR
5

“r Ty Ty Y 3

CXFIREZ

2

DRl e i

Y &

Pt ¥
's

PRy

R

AP IS

O) VS Y

e e vy

- VYR I P N E R K] I W O R W N g Aalsd, LY AL et 1Vl b tal bl Y
printf ("Error on Stmt %d in cobegin biock\n",jj);
}
{
exit (@); }
pid = fork ():
if (pid '= ©)
pidarray[jj++] = pid;
if (pid == @) {
while (count[3] + count[4] < 75)
pid = fork ()
if (pid '= ©)
pidarray[jj++] = pid;
if (pid == @) {
add (3, 18),;
exit (0); {
pid = fork ().
if (pid t= 0)
pidarray[jj++] = pid;
if (pid == 8) }
odd (4, 19);
exit (@): 1}
for (ii = @; i < 2 ii++) H
pid = wait (&stotus);
if (status) 1}
iy o= e;
while (pid '= pidorray[jjl])
it
printf ("Error on Stmt %d in cobegin btock\n”,jj);
}
{
exit (@): }
for (ii = @: ii < 2, ii++) 1§
pid = wait (&staotus);
if (staotus)
jj =0
while (pid !'= pidarray[jj])
i+
printf ("Error on Stmt %d in cobegin block\n",jj);
}
$
printf ("Counters @,1, and 2 added equal %d\n", count[@]+count[1]4+count[2]);
printf ("Counter 3 and 4 odded equal %d\n", count[3]+count{4]);

21

r

L
" a A B S

po Mo

> m_ w_a_w_ s, [V UL R R e |

RERAF AV AP Ry -,;, Il'-.%..f.‘f“i \-1 _'. o “- A o WA .-n -‘1 5.(-...-_“1 < \n)
A B X ral Al B » Y

LAGSARLAL AT LGLAL AR bt it

4.2.5 Dining Philosophers

Example 28 is a solution to the Dining Philosophers problem. In this problem, there are
five philosophers. Each philosopher spends his day in two activities, eating and thinking.
After spending a certain amount of time thinking, a philosopher will become hungry and
want to eat. In this solution, a philosopher must enter the dining room to eat. Only four
philosophers are allowed in the dining room at a time. This restriction ensures the absence
of deadlock. The dining room contains a large round table with five place settings, one for
each philosopher. In the center of the table is a large bowl of spaghetti. There are a total
of five forks on the table, one between each place setting. After a philosopher has entered
the dining room, he must first pick up the fork on his left and then pick up the fork on his
right in order to eat the spaghetti.

This example combines the s_lock routines provided by DYNIX and the cobegin-coend
construct provided by the precompiler. There are six locks. An array of five locks is
declared to represent each of the five forks. Thus, when a philosopher attempts to pick up
a fork which is being used (locked), he must wait. If a philosopher picks up his left fork and
the right fork is being used, he will not put down the left fork. The lock “room” is used to
monitor the amount of philosophers in the dining room. The variable “occupy™ holds the
number of philosophers in the dining room. To enter the dining room, a philosopher will
first obtain the lock “room” and then check the variable “occupy”. If “occupy” is less than
four, the philosopher increments “occupy”, releases the lock, and enters the dining room.
If “occupy” is equal to four, he releases the lock and tries again. The main routine creates
five philosophers using a cobegin-coend block. Each philosopher receives his philosopher
number, the index into “forks” for his left fork, and the index to his right fork. Notice
how easy it was to place each philosopher into execution on a separate process by using
the cobegin—coend construct. Also, notice how clearly the cobegin-coend block defines the

concurrent tasks.

91

(A AN \;__:.W \."l ‘\;:';\

AR RN

R T T T T Y X IOy I

bl Vi ar =

a0 e gt 2" ' e

",

XA,

Josesesrrssevssans/

/* Example 28 o/

Jesverseeessnsrens/

#include <porallel/microtask.h>
#include <parallel/parallel. h>

finclude <stdio.h>

#define TRUE 1

#define FALSE ©

e e AR WY

/* This program is o solution to the Dining Philosophers probiem. o/

/* In this problem, there are five philosophers. Each philosopher s/ 2
/» does two things, he eots and thinks. In order to eat, a ./ RNy
/* philosopher must enter the dining room, pick up his right fork o/ ?‘
/e and pick up his left fork. The problem is thot there are only o/ ;t
/+ five forks, one between each of five place settings. In this o/ o
/* solution, the dining room acts os o lock and aollows onty four o/ :’
/* phitosopher to enter. Each fork is also a lock. 1f a o/ o
/* philosopher ottempts to pick up o fork and finds thaot it is o/ :
/* already in use, the philosopher will wait for the fork to be o/ |“
/* ploced back on the taoble. After a philosopher has eoten, he s/ a
/* will put down both forks and leacve the dining room to continue o/ %
/» thinking. The forks are declared as an array of locks. The o/ %
/% philosophers receive i1ndices into the array which desigrate o/ -
/* both their left and right forks. ./ ;,
shared slock_t forks[5], room; -
shored int occupy: j'
»
think (philnum) $
int philnum;
} L
printf ("Philosopher %d is Thinking\n", philnum); :;
()
?
eat (philnum) -;'
int philnum; ‘el
{ ke
printf ("Philosopher %d is Eating\n", philnum); '
t he
%
pickupfork (forknum) .
int forknum; :#
! .
s_lock (&torks[forknum]); %
H)
:. 3
putdownfork {(forknum) =
int forknum; \:‘
{ ~
s_unlock (&forks[forknum]); ~
{ N
)
enterroom (philnum) ;}
int philnum,; }?
i s
int in; ?ﬁ
in = FALSE, o
LS
while (! in))
s_tock (&room); :
it (occupy < 4) } e ls there room for me to enter ./ i,
occupy++. Sy
in = TRUE; My
printf ("Philosopher %d haos Entered Dining Room\n", philnum); }“
! [4¢
s_uniock (&room);)

LA

3]

.y . ‘ . N Rt m A s e Ph et ey T Tan
N) 1 SN T T T A, VAR P T A N T N A AT SO NG
N . i N '

b,

L 87g % 450 k' Bte AV 8T d'g b'g &°,

O YO8 TO TN RN O O PO T

exitroom (philnum)

philnum;

s_tock (&room):
occupy——:

printf

s_uniock (&room);

$
{

int
§
}

J

WX

("Philosopher %d has

phil (philnum, left, right)

int philnum, left, right;
§
int days;
for (days = ©,; days < S;
think (phifnum);
enterroom (philnum);
pickupfork (left);
pickupfork (right);
eat (philnum);
putdownfork (left);
putdownfork (right);
exitroom (philnum);
}
{
main ()
int i;
for (i = ©; i < 5; i++)
s_init_lock (&forks[i]);
s_init_lock (&room);
/* Begin ecch Philosopher
cobegin
phil (@, 4, 9);
phil (1, @, 1);
phit (2, 1, 2);
phit (3, 2, 3);
phit (4, 3, &);
coend
}
! (7

D O, ¥
QAN AT

O ORT

left the Dining Room\n", philnum);

days++) §

/+ creat locks o/

+/

R A

!

)
We, 0% ¥y

Tk

»f

o

O CRTY
e)

i)

-

Ay
Ot

L

(o o T

K

5,370,

- -
)

O« a

WASS AN S
L 2 .

T

A

ol 5 .')

o g s,

P
Ly

- A

'\": Ay S_';

. e
I

IS

o bl

- -"i“"-'s s DR L LI g

)

:Q\

L SO WA WL ML N TR, N W TS WU, U FU I TR U A T O FOU R i ey, e ¥ o U ¥ A'Ad ")

(R Aal Al Bl el)

4.2.6 Bounded Buffer

Example 29 shows a solution to the Bounded Buffer problem. In this problem, there are
two producers and iwo consumers. Each producer wishes to write to an array of buffers
and each consumer wishes to read from the array of buffers. The problem is that the
array of buffers is limited in size. So, if the producers write faster than the consumers
read, they will overwrite their data. If the consumers read faster than the producers
write, they will read either old data or nonexistent data. This is a basic synchronization
problem. In this example, the array can hold up to 10 buffers. Each producer will write
10 messages to the array of buffers for a total of 20 messages. Each consumer will read 10
messages. Each buffer will hold two items, the producer number and a message number.
The lock “prods.k” is used to ensure that each producer does not attempt to write to the
same buffer. The lock “cons1k” is used to ensure that each consumer does not attempt
to read from the same buffer. These two locks ensure mutual exclusion. Another type
of synchronization problem is conditional synchronization. In this example. the variable
“empty” holds the number of empty buffers. Each time a buffer is read by a consumer,
empty is incremented. The variable “full” is used to hold the number of full buffers. Each
time a producer writes to a buffer, full is incremented. A producer can only write to the
array of buffers if empty is greater than zero and a consumer can only read from the array of
buffers if full is greater than zero. This is referred to as conditional synchronization. The
two locks “full 1k” and “empty 1k” are used to ensure mutual exclusion when updating
“full” and “empty”, respectively. Once again each producer and consumer was created
and placed in execution using a cobegin—coend block. This example demonstrates the

cobegin—coend construct’s capability to create processes which execute different routines.

94

ol 4

s
'

v

WS

VP L, Gy

w v e & _&_=

‘_’i‘i‘n"

)
3

O T ")

PN =Y

]
-

L
Lt

AN SRRCRO Y A L AN LTy e R ot T At R A AT A AN T T T T A7 T T T TN N TN e T e

YT TORES) Y - & v ~ YT g .
Y A e O R O™ w » vq°g", Sata'ato el ¥al Al % 9 0.0 20 At ot §-2%0 00" DAL RS LR A

hySN ' -

Jreenrssnsassssnne/
/*» Example 29 s/

\ Jrssasesevsssnsnas/

| finclude <stdio.h>

#include <paraliel/microtask.h>
#include <paraliel/poralliei.h>
#define N 10

#define TRUE 1

#define FALSE ©

/* This program illustrotes the Bounded Buffer problem. In this o/
/* program, there are two producers and two consumers. The producers =/
/* write their ID and a messaoge number to a shared array buffer. The »/
/* consumers read the buffer and print o message. The message tells =/

s_lock (&empty_1Ilk);

it (empty > @) }

cont = TRUE;

/* the message number ond the producer who wrote it. The shared o/
/* buffer can hold 1@ messages. Each producer will write 12 messaoges »/
/s for a total of 2@ messoges. There ore four focks to ensure mutual s/
/% exclusion when reoding ond writing ¢ message and to ensure that o/
/*» buffer does not overflow or underflow. s/
/* cons_lk - only one consumer may read ot o time o/
e prod_lk - onty one producer mav write at at time s/
/* empty_lk — mutus! exclusion on the voriable empty o/
/» full_ik — mutuol exclusion on the variable full o/
/» The variable empty tells how many buffers ore empty and is o/
/* initioclized to 1@. The variable full tells how many messages are s/
/» in the array of buffers. Only one producer moy write to o buffer =/
/* at a time and only if empty is greater than 2ero. Only one ./
/* consumer may read from a buffer at o time and only if full is o/
/* greater thar zero 4
shared slock_t prod_lk, cons_tk, fulli_tk, empty_Ik;
struct entry §

int prnum;

int msgnum,
b
shaored int ir out . empty, full;
shared struct entry buffer[N]; /+ array of buffers s/
producer (num)

int num;
i

int i, cont,

for (i = @, i < N; i++)

cont = FALSE;
while (' cont) 1} /% wait until there is aon empty buffer

/* Enter Crivicar Regron s/

empty——;
!
s_unlock (&empty_lk);
$
s_'cik {(&orod_1ik},
buffer[in] msgnum = + 1,
buffer(in].prnum = num.

in = (in + 1) % N,

s_uniock {&prod_lk),

s_flock (&full_ik).
fuil+4,
s_unlock (&full_Ilk);

sieep (1),

/v Exit Criticol Region ¢/

/* Irncrement

/

ot ful' buffers o/

o/

b
4

4
:
3
:

Ld

A

TPl F}"

SEX SR =~ |-

[
'y " "

f-

N e AW
L "o ot

-

oA
-l AR

o

NP OLLL SRS XXX AN

7"
oo,

L I
N

2

T

v
.

P
Chats

T gy
Ay

A
4‘\‘:.‘,\-", .}.-

v Ky
N 0
\ >
7
4 ; : ‘r
! t
R consumer (num) .
B int num; .
1 § .
' int i, cont; :L
H (2
} for (i = @; i < N; i++) 1} »
i cont = FALSE;
while (! cont) 1} /s woit for a full buffer s/ "
s_tlock (&fulli_lk); 4
[it (full > @) ¢ 5
: cont = TRUE; ‘
\ ful l——; ﬂ
s_unifock (&full_1lk); .
t "
i
s_lock (&cons_lk); /% Enter Criticol Region o/ .
printf ("Message Number: %d\n", buffer[out].msgnum); Ny
printf ("From Producer Number: %d\n", buffer[out] . prnum); r}
printf ("By Consummer Number: %d\n", num);
fflush (stdout), ,
out = (out + 1) % N; ~
s_unlock (&cons_1k); /* Exit Critical Region s/ :l
iy
4 s_lock (&empty_lk); Y
y empty++, /* Increment # of empty buffers o/ ;
s_unlock (&empty_lk); A
sieep (1)
t .
) -~
i $ -
-
] . ‘:'
main () N
! It
in = @; /* pointer to buffers =/ .
? out = ©; <&
: 5
empty = N, /* Al buffers ore empty =/ :
full = @; ?
‘ l“
/* Start producers and consummers v/ ‘e
s cobegin
[producer (0): .
) producer (1), ™
consumer (@), i
. consumer (1), ;
' coend ’
; ’.
1
A -
'] ‘m
o
; 3
'. .
| a
[’ |
; ’
1 F '
. =3
~
)] /..
’ i~
W,) '-'-‘ ¥ '..{“- Ny "f\..\"- e e T '-‘_'-_.“. '-'_'- - .,‘.'.‘. " '-" et E R L e P T U i I AL AR R S T UL S S _-"’.
(000 24 A atlas S PACTIAAE SVRINIY ot e e e e e N T e e i s o T

Thay T R ELGERE God i A RGO NGALELNE S Gt 2t gt a\s e 240" a0 %) a8 pte 100 RN W WOV T WUV DU
5

] 4.2.7 Readers/Writers

Example 30 shows a solution to the Readers/Writers problem. This problem is similar to
the Bounded Buffer problem. There are a number of readers and writers. Each reader

R wishes to read a data structure and each writer wishes to write to the data structure. In

i this problem, any number of readers may read the data structure at a time. A reader does
e not change the data structure. However, no reader may access the data structure while a
writer is writing and only one writer may write at a time. This is a problem of mutual
\ exclusion. In this example, the shared data structure is the integer “value”. A reader
; will read and print “value”. A writer simply increments “value” by one. The variable
\ “read_count” holds the number of readers currently reading “value”. The variable “wrt”
M is a flag. “wrt” is TRUE if a writer is writing and FALSE otherwise. The lock “writer 1k”
R ensures mutual exclusion on both variables. Each reader begins by obtaining the lock and
i! checking “wrt” to see if a writer is writing. If “wrt” is FALSE, the reader increments
u “read_count” and reads “value”. A reader only prints “value” if it has changed since last
A read. After reading “value”, a reader will decrement “read_count”. A writer must check
) “wrt” to see if any other writer is writing and “read_count” to see if there are any readers
N reading. If “wrt” is FALSE and “read.count” is zero, a writer may proceed. The writer
will then set “wrt” to TRUE. After the writer is finished, he will set “wrt” to FALSE.
D) Again, a cobegin—coend block was used to create each reader and writer process.
\f
2
;
:
i
)
q
By
]
v ;
K
‘ ::
97 2

.

.
1V .

.

~

AT ‘..._v‘\- ORI AR
3 L) -

\: NSNS \1\1\-4 o’ ‘\f\d\(_‘-; WA \.-\ .‘f.‘-"\f- s \-: W r‘.'\-;.‘f\-‘\-\f\-'
L) L L) *' - »

VYV VRS AN ST UV T U0 T

J/stsesssnesensssesn/
/* Example 30 o/

J/rsensssensnssnsens/

finctude <stdio.h>

#include <paraliel/microtask.h>
finclude <parallel/parallel . h>
#define TRUE 1

#define FALSE 0

/+ This program demonstrates a sofution to the Reoders/Writers problem. o/
/* In this problem, there are three reoders and two writers. The o/
/*+ readers wiil read the variable “value" and if it haes changed since they o/
/* last read it, they will print its value. The writers constantly try s/
/* to updaote the varioble "value". This solution will allow as many o/
/* readers to access "volue" as wish. However, no readers moy occess the s/
/+ “value" when o writer is updating it, and only one writer may update o/
/e “"value"” at a time. The varioble "read_count" tells how many readers o/
/* are reoding the vorioble. The vorioble "wrt" is TRUE if a writer is »/
/* writing. A reader will proceed only if "wrt" is FALSE. A writer will ./
/s proceed only if "wrt"” is FALSE and “read_count” is zero. The tock o/
/* "writer_lk is used to ensure mutual exclusion on both "read_count"” and =/
/s twrt”, o/
shored slock_t writer_Ilk;
shored int vaolue, reod_count, wrt;
reader (num)
int num;
{
int oldvalue, in;
oidvalue = @;
in = FALSE;
for (; .) /+ forever do s/
in = FALSE;
while (! in) /* while I con not enter my crtical section, spin s/
s_lock (&writer_lk);
if (! wrt) § /* Are any writers writing? o/
in = TRUE;
reod_count++;
s_unlock (&writer_ik);
}
if (value != oldvalue) /* If value has changed, print it s/
oldvalue = value;
printf ("Reader %d saow value chonge to %d\n", num, oldvalue);
}
s_lock (&writer_1k);
recd_count——; /* Exit Critical Section ./
s_unlock (&writer_1k);
{
}
writer ()
{
int in,
ftor (5)
in = FALSE,
while (! in) } /* while I can not enter Critical Section, Spin s/
s_lock (&writer_1Ik),;
if ((! wrt) && (read_count == @)) { /e Can I write? o/
in = TRUE,
wrt = TRUE,
A YO RN CEA RN L L S A U RO AN

}

s_unlock (&writer_ik):

}

value++;

/e

Update value

s_lock (&writer_1k);

wrt = FALSE;

/* Exiting Critical

s_unlock (&writer_1k);

main ()

i
value = 0;
read_count = ©;

wrt = FALSE;

s_init_lock (&writer_1k);

/s Stoart
cobegin
reader (9
reader (1
reader (2
writer ()
writer ()
coend

Recders and Writers s/

+/

Section

v/

Y

LTRSS NRECLAL TICOLY S

TNpFIAT, T,

5Oy

[

4,

a.

&

Ty N

]

S

" v S Y

»
A %

L

LY
)

g

NI

Ly

.

X

o

»

PR b

——
’.

. r

FoE 5% J Tad

2y 40Ty

A4

[/

Ly I LY

e
)

s M2 E g 6 e DY, 828 B8 Aia & - e Bl R G A D A A VA RS M i A A e A a'A A AR aRh” kA sNA" Ak ok g ot ai aba G ot e i —
AL AN ‘U 4a37% 09 So) 9oy g VLU T WRE o N \ DN AL G0 BA. 0 A0t A " S g™l atd PASNAAPL ' oAU aRE" g2 280 b o8d o MM ¢4 2% o g

A 4

i i

»

! ;
! 4.2.8 Matrix Multiply -
) ,
" Example 31 shows a Matrix Multiply program. This program multiplies two 6 by 6 ma- ’
i by
Y trices. A and B, to produce matrix C. This means the each row of matrix A is multiplied _
J by each column of matrix B. This is an example of data partitioning. This solution di- :
: ; p p g X
N vides the data by rows of matrix A. Each process will multiply one row of matrix A by "
3 every column of matrix B to produce a new row in matrix C. This requires six processes
"
K since matrix A has six rows. Each process executes the routine “row” which accomplishes f
the multiplication. All six processes are again created by a cobegin-coend block. This
2 program is very simple and is used to show the cobegin—coend construct’s capability to s
p handle data partitioning. However, notice that the program needed to know the number ’
of rows in matrix A before execution. This shows the cobegin—coend’s weakness in a dy- :
) namic environment. This weakness could be overcome in this problem by using m _next. R
m_next could keep track of the number of rows which have been multiplied. A process By
could decide to multiply another row of matrix A by checking the value of m_next.
; ¢
1
BA
' N
>
\ .
L]
)
{‘. L%
l. \‘
'¥
]
[y t
%
\]
N .
T
’-
- :
- .
7 X
'} W
o 'w
1
» -
L
D)
) t
) 100 :

TN AT A 1 isg 5 e TN T T T A O A T L g AL by AN

RN
4 » LA -

BOMOI N LN UY VW UM UV LR U U AU U U O O % 'l VR T R T T T OO Y YR T Y Vad” v v TG
A) U J]

- A} L3 » - LY AR - [Ralt Tadl S R B g
o
-
o\
- .
»
. R
ﬁ\
.
..
-
/.t“.“ttt.““t./ -,
/* Exaomple 31 v/ ;
Jetsnrsssenssnnsnse/ ‘
#inctude <stdio.h> ;o
#define N 6 -9
shared int c¢[N)JIN]. o[NJ[N], B[NI[NI: ;
'
/e This procedure muiltipliies row i of matrix A by »/ :rv
/e each column of matrix B and stores the result in »/ -
/* in row i of motrix C. o/
void e
. Ly
row.(n)- At
int i o
{ o
int j.k RL
N
for(j=0; j<N: j++) 4
clilli]l = e P!
for{(k=0; k<N,; k++) ¢
c[ilfj) += a[iJI[k] » b[k][j):)
% Al
} *
AL
/* This procedure reads in two 6 by 6 matrices */ !
void RS
init_matrices () Fo)
e o~
int i,); ._...‘
printf ("ENTER MATRIX A and B by ROWS\n\n"); o)
for (i=@; i<N:; i++) S,
printf ("ENTER ROW %d : ™, i+1); !
sconf ("%d%d%d%d%d%d%d%d%d%d%d%d", &a[i]J[@]), %o[i][1])., &.[i][2]. -
&a[i][3), &o[i][4). &al[i][5]). &b[i][e]. &b[i])[1]). &b[i][2]. .
&b[i](3], &v[i][4]. &b[i][5]):
printf ("\n"); i
‘ ”
fflush (stdout); e
t '
/* This program multiplies two N by N matrices. A and B to get o/ f:
/* matrix C. The program is executed in paraliel by creating «/ iu
/* N processes with a cobegin. Each child process will multiply »/ GF
/* row i of matrix A by each column of matrix B to get row 1 of =*/)
/* maotrix C, where 1 is passed to the process All three ./ .
/* Maotrices are in shored memory for each process to access o/ »
/e Since each prccess is writing to o separate row in C. no e/ 5
/* synchronizat on to access memory is neccessary. s/ }:
o
main() e
i
void init_maotrices (). row (), »
into L, N
init_matrices (). / read in matrices s/ D
o
1'_'
cobegin Y
row .
row (1 :’f
row > |
row <
few (4)) >
row (5); :J
coeng N
"
/e print out eoch matrix ./ o~
L}
’
N
LY
G I N R A AR T N R . o T . ' ol ‘-r‘:“

(v MATRIX A MATRIX B MATRIX C\n"):
(Il
(i=0: i<N;
for (j=9;)
printf ,oalillil):
printf (" ;
for (j=0; j<N; j++)
printf ("%3d ", b[i)[il):
printf (" ")
for (j=0; j<N; j++)
printf("%3d ". c[i1[j]):
printf{("\n");

a

PPl Ll L) B,

TP T e S}

e D R N S e A O SH) A U AR

4y

:

v

USRS

v,

..~1‘.‘¢u. % 4e® M6 Ja¥ a4 gac g v ¥ gat fas € St Jat Gat¥

5 Synchronization

Svnchronization mechanisms allow one process to aflect the execution of another process.
There are two types of process synchronization. First, a process can delay until a specific
condition is true. This is referred to as “conditional synchronization”. Second, a synchro-
nization mechanism can be used to ensure mutual exclusion. Section 3.10 demonstrates the
s_lock routine which can be used to ensure mutual exclusion by encapsulating a section of
code by the commands s_lock and s_unlock. The Bounded Buffer problem in section 4.2.6
demonstrated conditional synchronization. In the Bounded Buffer problem a producer can
only proceed if the amount of empty buffers is greater than zero. Only a consumer can
release an empty buffer and so the consumers effect the execution of producers through a
specific condition. Synchronization of processes is based on interprocess communication.
For process A to affect process B, process A must communicate some condition to process
B. Communication between processes on the Balance 8000 is based on a shared memory
architecture. This means that multiple processes communicate by reading and writing to
shared data structures in memory. Thus, synchronization of processes in a shared memory
architecture is based on setting conditions in memory that multiple processes can detect.
Although the Balance 8000 allows programmers to create a large number of locks, its lock-
ing routines are based on a set of physical hardware locks. These physical locks ensure
mutual exclusion on the software locks which the programmer has created by performing
test-and-set operations. This ensures that multiple processes can not obtain the same soft-
ware lock at the same time. How does a programmer use shared memory to synchronize
multiple processes without the help of a hardware test-and-set operation? The following
two examples give software solutions to the mutual exclusion problem. After the mutual
exclusion problem has been solved, conditional synchronization can be achieved. This is

accomplished by placing the condition in shared memory and making it mutually exclusive.

103

Cod -'

-

o

| X L,

-

S,

-

P4
5 5

2@ "7

« _ 8
8
i

o A

=Y

2.2

PN SANS

)
RN
.
ﬁ'.‘.

e
o

i

.

AN "N:' ." -" "'. ® .:-.‘: .

b

"

ROy)

[T IR
AL DI TR

»

z
¢,

L
L
.

,I

[J "{1’ Ky

AT
L L L2

i

'f.:'
s
s

‘l‘l

« . s .

hY A e
"I I&I ."-4' o

A e N N T R S N R S I O O T VIR Y I XY w\\

N
oy
e
N‘
N
o
\-/"
5.1 Peterson’s Solution N
Example 32 is a software solution to the mutual exclusion problem as presented by Peterson ._,
12}. In this example, two processes wish to increment the same counter. The routine f:
“counts” increments the counter by one and prints out its value. The routines “lock” and ::
]
“unlock” provide mutual exclusion on this operation using only shared memory. In this o
solution, each process shares three variables. Two flags are used, one for each process. &
to indicate whether the process wishes to enter its critical section. The integer “turn” is Ny
used to indicate which process may proceed into its critical section. The routine “lock™ -]
is called immediately before a processes critical section and the routine “unlock” is called N
immediately after the critical section. The routine “lock” sets the process’s flag to TRUE L
"
%

indicating it wishes to enter its critical section. “lock” then sets the value of “turn” to
designate the other process. If “turn” designates the other process and the other process’s
flag is TRUE, then a process spins until it is either their turn or the other process resets its

flag. Notice that if only one process wishes to enter its critical section, then its neighbor’s

[;'.! &

‘l

flag will be false and it can proceed. If both processes try to enter the critical section at the

PR
S
.

)

same time, “turn” will point to only one of them and that process will proceed. However,

« o ..
[

P
.

after that process is finished, it resets its flag to FALSE and the other process may enter

its critical region. This solution is a strongly fair solution since a process will only wait at

i S

L5

most one turn before it can enter its critical section.

PR

b

PR Sl

P

P

- .'{

104

P4

+ I R LN PR G A TN S N LT~ - DA TR T T Nt e W e aT W T) 3 s - LN AR
B e N A N T T T N T o T AT T = T T TN L A, Y

Jorenssresvnvssves/

/* Example 32 o/

Jesssssevessnense/

#include <stdio.h>
#define TRUE 1
#define FALSE ©

is a software solution to the mutuol exclusion ./
Two processes wish to o/

/* This program
/- problem as presented by Peterson.

/* increment o counter. To ensure mutual exclusion each process s/
/* <calls the function lock before entering its critical section =/
/* the function unlock after exiting its critical section. The «/
/* processes share two variabies, flag and turn. flag is an o/
/* array of two flogs, one for eoch processor. The flaog informs s/
/* the other process that you wish to enter your critical o/
/* section. To enter its criticol section, a process sets its ./
/* flag to TRUE aond sets turn to designate the other process. ./
/* 1f the other process wants to enter its critical section and s/
/* its their turn, then spin. Ctherwise, enter your critical s/
/+ section. Atter exiting your critical section, set your flag s/
/+ to FALSE. o/
shared int counter, flag[2]. turn;
lock (prnum)
int prnum;
H
int j;
fiag[prnum] = TRUE; /* 1 want to enter my critical section
j = (prnum + 1) % 2;
turn = j;
while ((flag[j]) && (turn == j)) i /+ wait for my turn s/
}
unlock (prnum)
int proum;
!
filag[prnnml = FALSE; /+ 1 have left the criticol section s/
!
counts (prnum)
int prnum;
!
int i,
for (i = @; i < 190; i++) §
lock (prnum);
counter ++;
pr-ntf ("Process %d Increments Counter to %d\n", prnum, counter);
tfiush (stdout);
unltock (prnum);
{
}
ma:n ()
i
counter = 9;
cobegin
counts (@)
counts (1);

coend

= F~FFREFF PV,

> %

Tt Wy oy

o Ah

L ol S
N 55,

vy ®

ok

W e e =

;XA
SN

A

£

2

FaLS
(N

.
LN]

v-’-..:-{'.

-9
-

Oy,

.« %X
P

)

3 e,

P N

R, X

) s

g o S

Xt e

X

R R R R e

5.2 Eisenberg and McGuire’s Solution

Example 32 showed Peterson'’s solution to the mutual exclusion problem for two processes.
Example 33 shows a software solution for multiple processes as presented by Eisenberg and
McGuire [2]. In this example, five processes wish to increment the shared counter. Again,
the routines “lock” and “unlock” are used to ensure mutual exclusion by placing “lock”
at the beginning of the critical section and “unlock” immediately after the critical section.
Each process shares six variables: an array of five flags which designate the state of a
process (IDLE, WANTIN, or IN_CS) and the integer “turn” which designates a process
that may enter its critical section. This solution is more complicated than Peterson’s.
The routine “lock” sets the flag of a process to WANTIN and places the value of “turn”
in a local variable. The process then spins until the local variable indicates that it is its
turn. At this point, the process sets its flag to IN_CS. However, since a local variable
was used for the value of “turn”, the process does not know which other processes might
be in their critical sections. So, the process now spins until no other process is in the
state IN_CS. At this point, the process checks to see if “turn” points to it or to an IDLE
process. If it is its true, the process enters its critical section. Otherwise, the process gets
a new value of “turn” and tries again. The “unlock” routine is executed only by a process
which is entering or exiting its critical section. “unlock” sets “turn” to point to the next

non IDLE process in an ordered sequence and sets the flag of the exiting process to IDLE.

The “unlock” routine ensures strong fairness in the solution.

0 e NN AN A LA A A G NINT AT S ALY ~.."."w.“'~-

.-.‘;\""."\"\"- <

2t te®la s Pg® a S fab tat" “‘..‘ 9 .. & ‘.. -y4 . - a' .h v + », ~. . .‘. \. 0 by \".. - . ‘-t 8, -‘ 2 o 4 p “pig aty ,..'.. 0
X]
[
. .
*
R
P .
& [sersssessenersns/)
. /* Exampie 33 o/ J
/resreserssconssns/ 2
a finclude <stdio.h>
& fdefine IDLE @ "
¢ #define WANTIN 1 !
: #define IN_CS 2 "
. #define N 5 ?
A /% This program shows the software solution to the mutuo! exclusion «/ s
! /* problem as presented by Eisenberg and McGuire. There are N o/ 2
/*» processes which wish to increment o counter. To ensure mutual o/)
f‘ /* exclusion while incrementing the counter, eaoch process calls the o/ X
R /* function "lock" before entering its critical section and calls ./ N
(" /* the function "unlock" ofter leoving its critical section. All o/
/* processes share an arraoy of flags, one per process. A flag con ¢/
R /% be in one of three states, IDLE, WANTIN, IN_CS. They also share s/ 3
" /* the varioble turn. Notice thot o process can enter its critical ¢/
< /* section only if no other process is in its critical section. o/ 5t
‘: /* Also note that the value of turn is modified only when a process o/ ﬂ
3 /* enters or exits its critical section. Once a process hos set ¥4
iy /* its flag to IN_CS (thinking that no one else is in their «/ A
= /* critical section), it woits until turn points to it or the o/ =
/* process which turn points to is idle. s/
'ﬁ
‘: shared int counter, flag[N], turn;)
Y tock (prnum)
i int prnum; ‘:
! { N
int j;
3 v,
do 1§ -
2 flag{pranum] = WANTIN; /* I wont in my critical section s/ ?
j = turn; f
[white (j '= prnum) /* Wait until everyone between =/
‘ if (flag[j] !'= IDLE) /*» me and turn are IDLE ¢/ !
] j = turn;
else X
i=(j + 1) %N; L
§ ~
/ flag[prnum] = IN_CS, /* 1 am entering my critical section s/ -
| j = @; -
X while ({j < N && (j == prnum) || (flag[j] '= IN_CS))) .
j++
§ white ({j < Ny || ((turn != prnum) && (flog[turn) != IDLE))); K
" turn = prnum,
! $ J
N A
uniock (prnum) W
X int prnum;]
)
rnt I -
o
" ;= (turn + 1) % N; /*» Give turn to rext in fine / ’
) while (flag[)] == 1DLE) o)
3 =)+ 1) %N i
) turn = | o
flag[prnum] = 1DLE; /s | am out of my critical section s/
. {
1
§ counts (prnumj)
! rnt prnum;
K !
k int

\ SR TA T o At S LI) OO e Y W 5 SRV N R > N
AT ARG GRS R QN O RN 8 0 N R N R A, R A A AR A A A N

' N OO &

O SR N

‘o o ¥y, '-

200t 4 gt gt 9.8 . 8.8 028 #

(i = 8; i < N,
fock (prnum);
counter++;
printf
fflush (stdout);
unlock (prnum);

for

}
main ()
int i;

counter = 0;
turn = 9;
for (i

= ®; i < N;
flog[i] =

IDLE;

cobegin
counts (@
counts (1)
counts (2):
counts (3
counts (4
coend

).
).

SO TN, sl >y

("Process %d

RS A A W VW

i++)

/

i+4)

ra
(Y AN

Increments Counter

A AR

R4

0. 18.%3",

“o ual ap_®

to %d\n",

set everyone to idle

proum,

*/

s

counter);

WO

8,

a

-

A AR A

R

e

-
. ARGy YY)
. ¥ ¥t L

S5

Pl LRt
Pt N ¢

o T T

¥y

NS A A

5

P ’v

rs l'-'
¢
£

!\f J. (:'

<

.
r

L

-7 I"I L3

P

‘{'}':",I’{If{f‘

b & e

g /* prforks is called each time o new stotement is found within a o/
) /% cobegin—coend block. The routine inserts the code required to o/
/* fork o new process and add the PID of eoch child process to an of
/+ on-going list. An array of print statements (the code to be o/ A
/e inserted) is created using the structure ‘'entry’. The paramenter o/ |
’ /e *¢ol’ holds the column to begin printing the inserted code. o/ :

by prforks (col)

int col;

" t 4

Y int j, i;

3 stotic struct entry stmt[4] = § § “pid = fork ():\n\0@"},

frif (pid !'= @)\n\0"},

i pidarray[jj++] = pid;\n\0"},
{"if (picd == 8) {\n\0"} }.

! for (j = ©; j < 4; j++)
o for (i = @; i < col; i++) /* move to column col s/

o putc (' ', output);
$| fprintf (output, stmt{j].In); /e oprint fork logic e/ ,
& i

b fprintf (trout, "sss New Staotement and Fork ¢ss\n");

-
LN

o
AAAY

R AT

)
)

o

- T " . 2 o ", = o,
"R A R S R R N Y

T e e
"

N

"9,

L A A N I I N N L o N MmO A T Y R R T Y o T R R Y Y ey v o oy

)

; »
b I
!
¥ . . f
§ ~
! <
[
¢ o
¢ W
: &
/s The routine push will enter o new symbol on the top of the stack o/
/* push returns a 1 if successful and o © if stack Overflow is found. «/
: /+ 1f Overflow is found, UPPERBOUND may be reset in the fdefine ./ y
2 /v staotement at the beginning of this program. s/
[-
i push (symbol, 1In)
. char symbo); /% symbol to be pushed on stock o/
int In; /» line number where symbo! was found s/
{
I fprinty (trout, "Entered Push routine\n"); ~
! if(stk.top >= UPPERBOUND) } /* OVERFLOW ? o/ z
B fprintf(stderr, "Overflow on Stack\n"); /+ Print error message s/ = X
! return (9); ,
¥ -
\ } .
s else § .
stk.top++; /* advance top ¢/
| fprintf (trout, "Top : %d\n", stk.top): Y
h fprintf (trout, "Pushed stack char: %c at line: %d\n", symbol, In); Ly
; stk.sym[stk.top] = symbol; /* add symbol ./ i
A stk.lnum[stk.top] = In; /* add current line § »/ *1
\ return (1)
$ e
}
' [
A !I
['.-
. o
DA o
1)
. N’
3
1
) ~
[:
;
d 3
) -
! u
X ’
L v
Yy 5
! ,
.
«
A
.
» ’-
,,
» :'
(
’
“
'
D
3
D
¢ .
D A O e A I N N N SR e o ot L ot g s e 2 Nt N

R R A LA A N R A LT e 9 Yo mra o8 90 b’ Bl e e iRt . . Aav Bav . . aae Ty
e 0N R N O om ¥ at 4y DeSod i ta b R0 ot ot ie® det e 5 g0 gt oy W T Y VS g W X W W L

-

'

' &

o’
' d
)
/* The empty routine returns 1 if the stack is empty and © otherwise. o/ !

/* The chaorocter '&' indicaotes an empty stock. s/
i
empty () o

rs
-

return (stk.sym[stk.top] == '&°);

x

B

/* The routine pop will delete the top symbo! on the stock. +/

/* pop returns a 1 if the operation is successful and o 9 o/ »
/* if Underflow is found. ./ “nd
pop () -
’ Iy
fprintf (trout, "Entered Pop routine\r"); /* Print stotements to s/ ::
if (stk.top == LOWERBOUND) § /* trout trace the ./ .
fprintf(stderr, "Underfiow on Stack\n"); /* stack operations .o/ >
return (@); §
t .
else §
fprintf (trout, "Poped stack chaor: %c at line: %d\n", stk.sym[stk.top],
stk.inum[stk.top}); d
stk.top——; /+ delete top symbo! s/ .
return (1), %X
i wi
} N
LN
L%
o
)
>4
r
.
o
,.
]
\]
~\4
5
~
~
L5
'
~4
m
pd
N

A A E]T S e
-

A7
o

..

L

Sl dT

-

BT L L A et N LY N W e e N e te e e e s e e R, e e e e R -
' 1 . W e a* PR I P T “at . - . LRl
1N A fb. fnhﬁﬁ;&f‘ LV AV VNGNS S NP S AS S STRI N PP AP PR AR S T Ry "."'\.'- ';'f \.'L\J':P.':.\':':ﬁ':‘.':m'._

L4

0t b3 Vol oh aat aa kB R oAb & 8" TR oy T P T T T P S P T P arrey
RN B, A 19 TR VROV A AL A A aeh %A WY AT O C T WIN WD Yo

P .

¥
)
¢
®
. #include <sys/wait.h>
’ finclude <ctype.h>
#include <strings.h>
) #include <stdio.h>
it fdefine TRUE 1
4 $define FALSE ©
" #define LOWERBOUND @ / lowerbound on stack =/
i #define UPPERBOUND 99 /* upperbound on stack s/
/+ FILES: o/
b /e input points to the C source file »/
s /* output points to the C source file after precompiiotion o/
? /* trout points to a file containing o trace of the stack operations s/
)
FILE sinput, soutput, etrout;
Y int lcount; /e count number of lines in source file e/
char line[80]; /+ buffer to read one line at o time o/
"
g struct stack #§ /+ The stack is used to search for the o/
] char sym[100]; /¢ end of a statement. When the stack s/
Y int Jnum[i100]; /+ is empty the end of the statement has «/
h int top; /* been found. top points to the top of +/
t } stk /+ the stock, sym hoids the next symbol s/
- /* to locate, and Inum tells on which o/
1 /» line the search began. o/
5 struct entry { / entry allows the creation of an array =/
1 char In[80]; /* of print statements. Each statement o/
p i / must be less than 80 characters. o/
D)
K
¥
I\
)
#
W
¥
¥
v
l
"
.
v’
»
!
l
|
[}
]
)

v
{
s
U
! O AT AT M A TR T AT AT TN T N Y W W W - - - - - .- - e a -
RO 2RO N S S Vi e e NN N ISCRECg ’_\f\-\." PRSERAIN A N SORaC N (R)
- fod » s . L L) L

L) - »

OGN A

-
LN W

*

AW 30 % BT B |
Al

et .‘ .0‘1‘ &n. '

et R0 a0 0 a0 " 2" N M r\.“‘l'.

APPENDIX A
PRECOMPILER CODE

112

N, LD

]

A A e e

2 St A T e

N i

o '5'-".";":

h

L AL P T PP

3

- - v v
-~ l;:‘__\ .’.. R 4

%

.‘. pEY -

Al

f!“",?)'l"l"- (.T" £ P ‘v
g - Pl o T e Yo

P E s

<
s .

N i S S N

Bibliography

1. Andrews, G. R. and Schneider, F. B., “Concepts and Notations for Concurrent Pro-
gramming”, Computing Surveys, Vol. 15, No. 1, March 1983.

2. Peterson and Silberschatz, Operating Systems Concepts, Chapter 9 and 10, Addison-
‘esley Publishing Co., Reading, Mass. 1983.

3. Rochkind, Marc J., Advanced Uniz Programming, Prentice~Hall Inc., Englewood Cliffs.
New Jersey 1985.

4. The Balance 8000 Guide to Parallel Programming, Sequent Computer Systems Inc..
1985.

. DYNIX Programmers Manual, Sequent Computer Systems Inc., 1985.

. The Balance 8000 Technical Summary, Sequent Computer systems Inc., 1985.

-

. The Balance 8000 C Compiler Users Manual, Sequent Computer Systems Inc., 1985.

- -

P e

T - - -

A

AN AT P I i B R R o~

AT et ta® ~g .8 . o' ‘.". 02t Uad fat et el fh - gad ¥ §p% ot et 0 ot ft g2t) 0 Ach gt ‘- Rt 0.8 0 0t RA "

The Balance 8000 provides a complete concurrent programming environment. The pro-
grammer has all the required primitives for process creation, synchronization, termination.
The programmer has the responsibility to ensure that every use of these primitives is con-
sistent and correct. A complete investigation into the memory aspects of the Balance
8000 is needed. The creation of a message sending mechanism would also be an interest-
ing research topic. This mechanism would, of course, be based on shared memory. The
concurrent programming routines in the Paralle] Programming Library are also available
for Pascal. Appendix B discusses the implementation of the cobegin-coend construct in
Pascal. The software community has a fair amount of research and implementation work
to accomplish in order to meet the multiprocessing capabilities provided by the computer

hardware community.

110

AT e

R T e e T T R N (e O S e S L N T TS
RS Ui 5 T T S N P N : e A Wt

LIS -

LTS T

.

LA O
g

FIR) . .

LEb AL e

Yy WY s w es

AR B R A RS

¢ ¥ v 2

AT A
PO N Ry

N om s s

L
.

6 Conclusion

The objective of this paper was to investigate and document the concurrent environment
of the Sequent Balance 8000 Multiprocessing System. The paper concentrates on the
process creation and control mechanisms provided by the DYNIX Parallel Programming
Library. A precompiler is also introduced to implement the parallel programming construct
“cobegin—-coend”. The fork and m_fork routines are DYN!X routines for process creation.
The precompiler implemented the cobegin-coend construct using the fork, exit, and wait
routines. The m_fork routine may seem very limited in its capabilities, however, when
used for data partitioning applications, its serves its purpose. The m_fork routine, like
cobegin-coend, is based on the fork routine. The fork routine is a simple and fl xible
routine for process creation. However, the coding of forks, exits, and waits can become
confusing. It is not a clear mechanism for denoting process creation. Each call to fork
also requires approximately 50 milliseconds. This suggests that process creation should
be limited to only those applications whose individual process run times exceed the time
to execute each fork. Although many applications benefit from the fact that a fork
operation copies the parents total environment to the new child process, this should not
be the default and serves only to waste time and memory. What is needed is a mechanism
which copies only the section of code which is to be executed by the new process and any
other explicitly referenced information. The cobegin—coend construct is a very easy and
clear mechanism for process creation, but loses some of the flexibility of the fork operation.
An extension to the cobegin—coend construct is needed to add the dynamic features of the
fork operation. A type of optional statement guard is suggested for the cobegin—coend
construct. This guard could be used to determine process creation and carry a parameter

which determines the number of processes to be created.

The DYNIX Parallel Programming Library also provides many . >utines for process syn-
chronization. These mechanisms can be used to solve both the mutual exclusion and
conditional synchronization problems. However, all these primitives are built upon the
Balance’s locking mechanism. This paper has already shown that this mechanism is only
weakly fair. This means that no strict order is maintained on which process is next to
obtain a lock, but that each process will eventually obtain the lock. The locking routines
of DYNIX are very dangerous. The programmer has the responsibility for explicitly and
consistently coding every lock and unlock command. This can also lead to difficulty
in maintenance. A Monitor capablility is suggested in which any shared resource can be

encapsulated in one location along with any valid operations on that resource.

109

LA

a7 e N N ol A AP 2 e T T S e O T T

oK

o
)
»
P
>
..
‘&

-
o

A P T W A R R N T T T IV Y eV
-

/* prwaits is called ot the end of a cobegin — coend block. o/
/* The rountine inserts the code needed to perform the wait system s/
/* cal! into the updoted C source file. A loop is created in the .o/
/" rew source file to perform o woit operation for each child o/
/* process. Within the loop, the porent receives the PID ond the 4
/* stotus of each child process. I{f the status is nonzero, then aon s/
/* error has occurred and the orray pidarray is searched to find the o/
/* number of the statement which returned with the error. A message ¢/
/» is printed giving the staotement number reictive to the cobegin o/
1 /* block. An arroy of print statements (the inserted code) is o/
/* created using the structure “entry’. The paramenter 'n’ holds o/
e the number of woits (loop iterations) to perform. 'col' holds o/
/e the column number to stort the code for a structured appearance. o/

prwaits (n. col)
int n, col;
H

nt o jL i

static struct entry stmt{9) = § §"for (ii = @; ii < %d; ii++) $\n\0"},
i pid = wait (&status);\n\0@"},

g if (stotus) §\n\@0"},

i ji o= @:\n\e"i{,

i white (pid != pidarray[jj})\n\0"},

i jit+i\n\e i,

r on Stmt %%d in cobegin block\\n\",jj);\n\0"},
i f\n\e" i,

f*i\n\o"t {;

.\l, -

§ printf (\"Erro

$f

Y

fprintf (trout, "Prwaits is called number of Waits : Z%Zd\n", n);

b 4

for (i = @; i < col; i++) /* move to correct column to insert code +/

pute (’ ', output);

2T
BT e

fprintt (output, stmt{e].in, n); /* insert "for loop’ e/
for (j = 1, j < 9; j++)
for (1 = @, i < col; i++4) /* move to column 'col’' s/
putc (, output);
fprintf (output, stmt{j].tn); /+ insert wait logic e/

TSN N,

2

N
-’: g L{SI‘,","‘I

[s
»

-
R

.
)
‘e
l‘..
14
l.‘-
-._.
A L W AR A S SRR a;.x'..&‘f.a-'f:.’.;.’_'.' PV od

AT AT

O

V0t wel Tr Py

w - w [P g % KRR RS TRESLARR A R A o At R ANACh oVt anig's oV el go gtg. o« N
/+ The routine forkstmts is called when the beginning of o »/
/+ cobegin - coend block is found. The overall function o/
/+ of this routine is to seporate the statements within o/
VA the cobegin - coend block and to call the appropriate o/
/* routines to insert the fork, exit and wait code. This s/
/+ routine is recursive, so that if it finds the beginning «/
/* of a cobegin — coencd block, it calls itself. forkstmts «/
/* wuses the stack to find the end of a statement. It o/
/e initially assumes the end to be a ';’' and thus places o/
/% thot choracter on the stack. If o '§' is found before s/
/+ the end of the statemeni is found, then a '}’ replaces s/
/* ;' aond will now indicate the end of the statement. s/
/e every time a character is read that matches the top of o/
/* the stack, then the top of the stack is deleted. 1t ./
/* the stack is empty, then the end of the stotement is o/
/+ found. A switch staotement is used to check each o/
/[choracter that is read. The parameter ‘'col’ holds the ¢/
/s column number where the cobegin was found. This is used s/
/* to create a structured appearance when inserting code. ¢/
/% forkstmts wil! call the push and pop routines inside o/
/*» if stotements. This is to check for errors. If an o/
/» error 1s found, forkstmts returns o @, otherwise it ./
J/* returns o 1. ./
forkstmts (col)
int col;
{
int nocoend; /* True when no coend has been found s/
int dostmt /* True when o do staotement is found «/
int notstmtend; /s False when the end of o statement is found =/
int numwaits; /* The number of iterations for the final wait logic s/
int cont; /* Used to find the begining of the next staotement »/
int nxtchr; /[The index into the current fine for the next char. s/
int .
numwaits = €,
nocoend = TRUE;
if ({(fgets (Vine, 8@, input)) == NULL) /* read new line s/
fprintf(stderr, "EOF found, Missing coend\n"),;
return (0):
}
else §
nxtchr = @, /* next character is index @ s/
lfcount++; /* increment line count ./
!
while (nocoend) i /* do while no coend stotement is found =/
dostmt = FALSE;
notstmtend = TRUE;
/* Loop untiit a new statement or a coend is found o/
/e This toop is for skipping over blank !tines and ./
/e finding coend statements. The coend must be on o/
/e line by 1tset'f ond not within ¢ stotement So o/
/e look for coend before entering end cf stmt logic o/
cont = TRUE.
white (cont)
while ({i1sspace (1inef[nxtchr])) && (!l ine[nxtchr] = "\n"'))
nxtchr++, /e find first nonspoce char o/
fprintf (trout, “First char on new stmt. Zc\n", line[nxtchr])
switch (Vtine[nxtchr])

AN LA LA LN T T AT AT R AT 4T LT AR
Xallnl Enl ol o -8 - 5

(\r \(‘\r ..-‘ “ -'_' - ._\'\-" ‘.-'_‘ .7__.1-. _.r.;

A R O R RN SR
3 L \ " A ! a » -

. - ~
. \~.

o

.-
- n
)

o S T TS

55N SN T

TRJX N ®

-

g™ N

‘g andtu

»*

R

v &

oy 02,

T NG RAL YT

A AR

e o e -
‘< "'!""_':‘(' '4.

P AT
. S

"" P

L]
[

RN A N
RN

e

L
RPN

U0 L U UM LW U AU IR U U S R A R R T RO WA R K U R N ¥ PR YN R o R o R O Ty T D T T T)
L'
e
‘I-,
’
vf
o
N
Iy
/e if o coend is found then insert code for wait loop =/ }ﬁ
/*+ and leave the forkstmts routine. If o cobegin is «/ ol
/* found print on error message. Placing o cobegin s/ "
/* block between statements of a cobegin biock will ./
/* accomplish nothing. o/ o
case 'c’: -
if (! strncmp ("coend”, &line[nxtchr], 5)) } :(
fprintf (trout, "coend found at line %d\n", lcount); o
nocoend = FALSE;
prwoits (numwoits, col); /» insert wait logic . :
notstmtend = FALSE; /% no more stimts to find o/
if (! pop ()) /* pop stack separater o/ o
return (@); :;
}
: else if (! strncmp ("cobegin”, &line[nxtchr], 7)) f A
! fprintf (stderr, "Improper placement of cobegin”); };
return (@) V
} '
cont = FALSE; /* exit loop =/ 3
breaok; .
)
/% 1f o new line is found, read in the next line =/ ':
/¢ it EOF is found, then print error messoge ./ ;
case '\n': n
fprintf (output, "%s", line); 14
if ((fgets (line, 80, input)) == NULL))
fprintf (stderr, "EOF found, Missing coend\n"); Q‘
return (0); -
} o
else § '
nxtchr = 0; /e reset index and increment line count ./ o
lcount++;
fprintf (trout, “line %d read \n", lcount); -
; o
break; iy
defoult: e
cont = FALSE; /* next statement is found =/ v
break;]
; N
; o]
8
if (nocoend) ¢ /* if no coend stmt hos been found, s/ -
if (' push (':;', lcount)) /*» then fork off the next stmt and v/ -
return (0); /* increment numwaits ./ +
numwaits++;)
fprintf (trout, "Numwaits is now %d\n", numwaits); &
priforks (col); }!
§ PNy
/e This next loop finds the end of eoch statement by using o stack. »/ f-
/* A switch statement is used to evaoluate each chaoracter. The top ¢/ y
/* of the stack and the next character read determines the oction o/)
/e to be taken. The following logic is applied: o/ ~
3 /e ./ N
b /e The staock top 1s ¢ . . Whenever o symbol! is found which s/ .
] /* motches the top of the stack, pop the stact 1f the stack is o/ h!
/e empty. then the enc of the staotement hos been found. It o ' o/ ..;
/e is found ond tne top of the stack 1s o ',° then g block o/ A
/* statement s found and the end of the statement will be a "}'. ./)
/* Therefore, pop the "' off the stock and push the ‘'}°. However, o/ ~
! /e {f the block 15 o dc statment, then do not pop the ' ;° if o o/ -:
/* newline char s found. then read the next !ine It o """ is o/)
VA foung. push it on the stock and itgnore all eise until another o/ ?'
/e "' 3s found. If a '} 1s found i1gnore al! characters except a o/ N
/ "t untit o " s found It o (' 1< found and the top of the o/ '
/e stocr s o ' ;'. then ignore at: other chorogctere except '"° o/ ;
NG
N

o % o R TS I A S L A AN X "y A », . \ - B - e Je®
e g AR LN AR e 3 0400 3 el ™ N et TN et R
td () I

> Wy B, e AN

/¢ until a ')’ is found. If another cobegin is found, then coll s/

/s forkstmts recursively to separote and fork the staotments. o/
while (notstmtend) § /+ statement end has not been found s/
: switch (line[nxtehr}) §
/% 1f a d is found, check for a do ioop. The do ioop s/
/% is o specic) caose. A do loop will be encliosed by ¢/
/* the §{ ond } symbol!s, but will end in o ; symbol. ./
/*» Do not pop the ; symbol off the stack. o/
case ’'d’:
fprintf (trout, "Case d ot %d\n", lcount);
if (stk.sym[stk.top] == ;")

if ((! stroncmp ("do ", &line[nxtchr]), 3)) ||
(! stencmp ("dof", &linef[nxtchr], 3)))

: fprintf (trout, "do while found on !line %d\n", lcount);
dostmt = TRUF;

t

nxtchr++; /* get next character s/
break,

/e 1f a c is found, then check for a new cobegin block. s/

/[If a new cobegin block is found, recursively call o/
e forkstmts routine to process the block. o/
case ‘¢’
if (! strnemp (“cobegin®, &line[nxtchr], 7))
fprintf (trout, "cobegin found at line %d\n", lcount);

if (! push ('&', lcount)) /* push on stack separater ¢/
D return (0);

if (forkstmts (nxtehr)) § /o call forkstmts recursively s/
fprintf (trout, "»+sReturned from coendsss\n");
fprintf (trout, “Top: %d\n", stk.top);
fprintf (trout, "Symbol: %c \n", stk.sym[stk.top]);

/* Returned OK so read next line =/
if ((fgets (line, 88, input)) == NULL)
fprintf (trout, "Missing %c from Jine %d on stack\n",
stk.sym[stk.top]., stk.lnum[stk.top]):
fprintf (stderr, "EOF found, Missing coend\nr");
return (0);

}
eise }
nxtchr = @, /+ reset index and increment line count s/
lcount++;
! fprintf (trout, "line %d read \n", lcount);
}
else § /* Bod return from forkstmts routine o/
; fprintf (stderr, “Bad cobegin block \n");
return (0);
}
X }
! else if (! strncmp ("coend", &tine[nxtchr], 5))
i fprintf (stderr, "coend found with.n statement\n");

tprintf (stderr, "Missing End of Statement\n“),
return (@),

{
else rxtchr++, /+» get next chaoracter o/
breat :
D
' /e If c new line 1s found, read 1n the next line o/
: case \n’
| tprintf (trout, "Case newline at Z%Zd\n' . lcount);
1 fprintf (output. "%e", linei.
if ((fgets (iine. 82 nputi) == NULL } /e EOF? o/

"f“‘l I A DI 8 - v g Mg VR g LS AN LY RA LI Y] RS A N NS Wl W R oL m WA R LWy W
2 Py 2%, Py i8N) c.ﬂo.l. o508 ey 00) ‘. WS -.-. I, .c 4\. s Ly e ln Lo ."(“‘-':R"P '(. SAS) }‘ W, Yy, '.

. WA,)

fprintf (trout, "Missing %c from line %d\n",

stk.sym[stk.top], stk.Ilnum[stk.top]):
fprintf (stderr, "EOF found, Missing coend\n");
return (@);

}

else
nxtchr = ©; /s Next line read, index is @, s/
lcount++; /* increment line count s/
fprintf (trout, "line %d read \n", lcount);

t

break;

/* 1f (is found aond top of stock is either ; or),
/*» push the symbol) on the stack
case ' (':

fprintf (trout, "Case (at !ine %d\n", lcount);

if ((stk.sym[stk.top] == ')*) || (stk.sym[stk.top]

it (! push (")’', lfcount))
return (9);
nxtchr++; /* get next character s/
break;

LI
NN

1]
]

"))

/*» 1f o} is found and the top of the stock is either a ; s/
/* or o }, then push the §{ on the stack. Pop the stack if »/

/+ the top is a ; and dostmt is FALSE. s/
case '{’':

fprintf (trout, "Cose § at line %d\n", lcount);

if ((stk.sym[stk.top] == ';') &% (dostmt)) §

if (! push ('}, fcount))
return (0);
$
else if (stk.sym[stk.top] == ;")
it (! pop ())
return (0);
if (! push ('}, lcount))
return (@)

eise if (stk.sym[stk.top] == "}{’)
if (! push ("}', lcount))
return (9@);
nxtchr++; /* get next character o/
break;

/* 1f) is found and top of stock is), then pop it o/

/+ off the stack. ./
case ')’

tprintf (trout, "Case) ot fine %d\n", lcount);

if (stk sym[stk.top] == ')')

if (! pop ())
return (0);
nxtchr++; /* get next choracter o/
break;

/» 1f a § is found and top of stack is §, then pop the o/

/¢« stack and check if staock is empty 1f the stock is /
YA empty, then insert exit code and stotement end has o/
/* been found ./
case 'f{°
tprontt (trout, "Coase { at 1ine %Zd\n', lcount);
if (stk.sym[stwk tog} == "} 3 3}
tt (' pogp (1))
return (@),
i f (empty ()) i /. empty stack” ./
nxtchr = prontex it {(++4rxtchr, col), /e insert exit o/
if (naxtchr == -1} /e bad return o/
return (@),
notstmtend = FALSE

- ‘..' o e \.o'\‘n' . fA-
A)A"_;. i_.‘:'.':'.ﬂ_‘

ks tapileY,

Wiy S
DY 7 N ™

SOty

W LAY X D ahe 05 ST AN AN LAY Q8T A Nt S e o b St Bat S 0k Ba® D020 4 b (¢ ¥
!
else nxtchr++; /» get next character o/
}
else nxtchr++; /* get next character s/
break;
/e 1f o is found and the top of the stack is a ;, ¢/
/* then pop stack and check if stack is empty. If o/
/* stack is empty, insert exit code ond stotement »/
/* end is found. o/
case ' ;':
fprintf (trout, “"Case ; at line %d\n", lcount);
if (stk.sym[stk.top] == ';')
if (' pop ())
return (0);
if (empty ()) § /+ empty stack? s/
nxtchr = printexit (++nxtchr, col); /* insert
if (nxtchr == -1) /* bad return s/
return (0);
notstmtend = FALSE;
}
else nxtchr++; VYA get next character o/
}
else nxtchr++; /* get next character =/
break;
/* I1f a " is found and the top of the stack is also a
/* then pop the stack, otherwise push the " on the stock.
case '\"’:
fprintf (trout, "“Case \" at line %d\n", 1lcount);
if (stk.sym[stk.top] == "\"')
it (t pop ())
return (9);
}
else
if (! push ('\"', lcount))
return (9);
nxtchr++; /* get next character =/
b-eak;
default:
nxtchr++; /* get next character o/
break;

}
}

return (1);

-._r.,-\,,-._ -'-\ .

AT LY 1"_:‘ l\:" "y W) {‘.\-‘\.‘ "'\-’ o Cw o,
ald AL D LA L) THWE LY

-/' W o q" '

5

exit

*/
s/

+/

10 (MR AR AT RV A
N o "“

v
1)
]
- K I
e o

NI

bl 2P

_ r"

a
B A

€0,
- *

AR

ll

— .,
- -

-~

-

.

- LA B e W__4 A *
- o
R

w
R

LTI 2T

- '.l",l‘: -"-Hy-

»

T e

X N

SAPS SRR N -',-‘_\
R il . - N

NS W AT NESLREN AL A gy, W Ry val - I.(.-q». WAL, ¥ ‘} O “ Y ‘ H’ .', ey) - 8 . . - Ny N .

l:' - - ' - v - - B - - - - - - - -
:
-
i d
b y
" L
0 b
t /* The routine find_block is called by the main routine for every s/ y
‘ /» file entered by the user. The main purpose of find_block is to s/ B,
/* search the input file for a cobegin block ond to call the «/
5- /% routine forkstmts to process the block. find_block opens three »/ 7
14 /+* files; the input source file, the output source file, and a ./ P,
4 /% a trace file. The output file contains the new C source code. s/ d
b /* The trace file contains a trace of the stock operations o/ Y
h /% performed. Given an input file name of XXX.c, find_block will s/ !
¢ /* create the output file with the name XXXp.c and the trace file =/
/* with the naoame XXXt.d. The trace file will be retained only if /
/o an error occurrs while processing the input file. ./
: find_block (filenum, argv, argc))
) int fiienum; /+* The number of the file in argv =/
x char sargv[];)
{ int argc; -
{
[y FILE sfopen(); A
) static char trace[15] = §* ", /+* The name of the trace file s/
A stotic char temp[15]) = §" "}, /* The name of the output file =/
3 int i, noerror;)
K]
¥ noerror = TRUE; /* noerror indicates an error in the input file »/
stk.top = O,
e
: /* open input file s/ M
> if ((input = fopen (argvifilenum]., "r+w")) == NULL)
$ fprintf (stderr, “Could not open fite: %s\n", argv[fiienum]); '
p exit (2); \
A $ 4
else
; fprintf (stderr, "Opened input file: %s\n", argv[filenum]);
strcpy (trace, argv[filenum]):; /s <copy name of input file s/ K
! strcpy (temp, argv[filenum]); /* to both trace and output s/ .
1¢] 1 = 0, .
0 while (temp[i] '= ".") i++; 3
trace{i] = "t*;
K temp[i}) = "p";
X trace[++i] = .’ ; /+ These instructions compiete the s/ .
i tempf[i] = '."; /* names of the trace and output ./ ’
Y trace[++i] = *d’: /v files. ./ .
2! temp{i] = *¢*; .
Ly trace[++i] = '\@"'; .
temp[i] = *\e"; i
2
; /* open output file s/ A
o . 1
[if ((output = fopen (temp, “w")) == NULL) } '
i+ fprintf (stderr, "Could not open file: %s\n"., temp): :
: ; exit (2); R
else
fprintf (stderr. "OUpened output file: %s\n", temp);)
»
/+ open trace file o/ i
d if ((trout = fopen {trace., "w")) == NULL} .
: fprintf (stderr. "Could not open file Zs\n", traoce):; '3
i exit (2);
. i
' else 1§
{ tprintf (stderr, "Opened Troce File Zs\n", trace),
b fprintt (trout, "Troce of Cobegir - Coend Block\n\n"),
' }
f)
‘: lcount = O,
/* This loop will reod the 1nput file and write to the o/
; i
L4
, 'Y ¥) * 3 ,) > - — - - e e e T e A T . - - - . "
i, 70,00 \ S NN N SRS .. lh X ' -’ Wi ia":&'ﬁ-.':g,_t\'\' PN S PPN TR S

PO A DL s st 0 Seb A R S8 N

/* output file until o cobegin block is found. At that =/

-

W /» time, the routine forkstmts is called to process the s/
/% cobegin block. If the routine 'main' is found, then «/
4 /* the orray 'pidorray’ and the voriables pid, ii, jj, ./
é /* and stotus ore inserted into the output fite. These =/
% /* ore used by the fork and wait code. o/
) /. 1f on error is found in the file, return o 1. s/
¥
’
" while (((fgets (line, 88, input)) != NULL) && (noerror)) f
lcount++;
0 = e,
while (isspace (line[i))) i++;
if (! strnemp ("maoin", &line[i], 4)) } /+ found 'mein'? s/
oY fprintf (output, "int pidarray[25]:\n");
! fprintf (output, "int status, pid, ii;\n");
N fprintf (output, "static int jj = §1}{:\n");
i
1 if (strncmp ("cobegin", &lineli]), 7)) /+ found 'cobegin’'? s/
YW fprintf (output, “%s", line);
1.'. else *
‘s fprintf (trout, “cobegin found at i1ine %d\n", lcount);
:- push (&', lcount);
\, if (! forkstmts (i)) /* process cobegin biock s/
noerror = FALSE;
¥ fprintf (stderr, "Bad cobegin block\n");
$
3 -
X if (noerror)
; fprintf (trout, "EOF: %s\n", argv[filenum});
fprintf (stderr, "Number of lines in file %s: %d\n",
' argv[fitenum], lcount);
5 :
)
4 /* close files s/
o if ((fclose (input)) == EOF)
iy fprintf (stderr, “"Could not close file: %s\n", argv[filenum]);
if ((fclose (output)) == EOF)
fprintf (stderr, "Could not close file: %s\n", temp);
: if ((fclose (trout)) == EOF)
‘ﬁ fprintf (stderr, "Could not close file: %s\n", trace);
"l
e /* <check for errors s/
“ it (noerror) $
- uniink (t:ace);
= return (0):
- H
': etse
:‘ return {1);
0y }
gl
o
i,
)
B
™
P)
e
\
".
W

'! - AP F AT g g YR~ YA T ALY RS AL NS B, R B - A TR M M- mca—R s v - -
ERNEACAC e e Y o o N e e e e e o T e o o

< Bl U8 SaR VAl Vol €al Vol ¥a)"

L SN e gb an om mh e an we

- e A e

/*
/s
/*
/*
e
/»
/*
/*
/[

The main routine simply checks to see how many files were entered s/

by the user and to fork o separate child to process each file. o/
1f the user doesn’t enter a file, an error message is printed. ./
The user may enter only 6 files. This is because o user can ontly o/
have 20 files opened and each file entered requires three opened ./
files (input, output, ond trace). If only one file is entered, o/
the parent will process the file and no children wi!l be created. s/
If o child has an error, then it returns the file number of the o/
file it was processing and the parent will print on error message. s/

main (argc, argv)
int argc;
char sargv(]:

int i, err, pid, filenum, nochilds;

union wait status;

if (arge < 2) /* Did the user enter a filename? s/
fprintf (stderr, "Must Give A File Name!\n");
exit (1);

}

if (arge > 7) /+ Did the user enter too many files? s/
fprintf (stderr, "User May Only Input 6 Files!\n");
exit (1);

§

nochilds = @; /* number of children is @ o/

filenum = 1; /+ file numbers start with 1 s/

setbuf (stderr, NULL); /» don’t buffer output to standard error device »/

if (arge == 2) /*+ only one file, don't fork any children. =/
err = find_block (filenum, argv, argc);
if (err)
fprintf (stderr, “"Error on File %Zs\n", orgv[filenum]);
}
else 1§ /* fork a child for each file */
while (orgec '= 1) }
if (fork () == @) }
err = find_block (filenum, argv, argc);
if (err)
exit (filenum);
elise
exit (0);
{
argec-—;
filenum++; YA increment file number aond number of children o/
nochilds++;
H
for (i = @, i < nochitds; i++) } /* wait for the children to finish s/
pid = wait (&staotus);
if (status w_status !'= 9) H /* the child returned an error s/
if (' staotus.w_termsig)
fprintf (stderr, "Error on File %s\n", orgv[status w_retcode]);
else H
tprintf (stderr, "Terminotec by System Error: Zul\n",
stotus . w_termsig).
if (stotus.w_coredump)
fprintf (stderr, “Core Dump Token\n"},;
}
}
{

b, oy Yok h W W " Wy o Wy Wy W - S R A I L A
2O WitV gl oot T Y A A RS A LG AN

” A Tt N T T N

.l-

P A

1

l")’v r? * .y

x .
A ad

g AN

i

N

g

AR AR AR

R A)
X

$‘. 't"r'r

Bt 0,0 a0 R et 90" H 8 00 050 070 840 0N Y

Ny -
ROt

R vt 3
AAIAS A ‘..‘qi. b,

-

Y

e A% %Y
s U4 RO

APPENDIX B
PARALLEL PASCAL

53" N
O 125 A0 LN

126

P AL

s, 'n'\'\}\
o3 L) i

AT AR Y

T € 1,
-. {.

..5.’. ?- :

7)

e S

ke
2

A)

LI 2R ot o o A

D4

£

™ SEAAARD

LAt
BN

>

4 P et o 4
‘l.‘"’l’l"':' P

XA b

¥
&7
L

-

PR adl 4
!

J WrSrES

<

‘X

Parallel Pascal

Any Pascal program can be linked to the Parallel Programming Library by including the
-mp option on the Pascal compiler command, pascal. A user must declare the routines
in the Parallel Programming Library as C external procedures or functions within their
Pascal program by using the keyword cexternal. The functionality of these routines is the
same for Pascal as for C. Reference the “Balance 8000 Guide to Parallel Programming”
for further information on using these routines in Pascal. However, the routines fork,
exit, and wait are not part of the Parallel Programming Library and can not be directly
referenced from a Pascal program. A user must first write a function in C which performs
the actual fork, exit, or wait and then link this function to their Pascal program. This
is very simple to accomplish. Again, the C functions are linked to the Pascal program
by declaring them as cexternal functions or procedures. Any C function which returns
an integer must be declared in Pascal as returning a long integer (longint). Place the C
functions in a separate file and compile them using the Pascal compiler. This file must have
the “.c” file extension. The pascal command is smart enough to call in the C compiler
for this file. Also, when the C compiler compiles the C functions, it places an underscore
before the name. The functions must be declared and referenced in the Pascal program
using this underscore. Pascal also passes parameters in reverse order to C. Thus, if you call
a C function and pass parameters A, B, and C in that order, the C function will receive the
parameters in the order of C, B, and A. If any C function references a Pascal procedure,
you must also include the -e option when compiling the files. When a C function returns,
the calling function releases the stack. When a Pascal function returns, the called function
releases the stack. The -e option ensures that the calling C function releases the stack not
the called Pascal function.

The following two files demonstrate the ability to fork procedures in Pascal, terminate
the processes (exit), and synchronize (wait). The Pascal procedure “add” adds a value
to a counter in an array of counters and prints its value. This program adds different
amounts to five different counters, concurrently. Before each call to the procedure “add”,
the procedure “_fk” is called. This procedure is a cexternal function which performs a
fork and returns the process ID. The parent process will receive the new PID of the child
process and the child process will receive a zero. The child process performs the “add”

[

operation and then calls the procedure “_ext”. This procedure is a cexternal function

which performs an exit. At the end of the program, the parent process calls the function

Ky LS

e G

. * $a% 0af #a% Ba™* W J -- ‘ \.u _ ;-...-.---- ._ “ W, ___ _..k_‘ fla® A Pt afat e’ ot et et ¢, _‘ "
Wy
o
f)
’
.
-
N . . \‘f
“_wt” for every child process. This function is also an cexternal function which performs Yy
a wait and returns the PID of the exiting process. The first file is the Pascal program. oA
. »
The second file is the C functions which call fork, exit, and wait. The array of counters Y

is placed in shared memory since all global variables in Pascal are shared. This example

implies that every routine a C program can reference can also be used by a Pascal program.

Z5

However, the user is cautioned when performing I/0. If the main program is written in

Pascal, use Pascal for the I/O. This example also implies that the cobegin-coend construct

27

can be easily extended to Pascal programs.

2,

d

LA

2o

A. w \';nﬁ{“,'("‘,". 4

P

s
-

o

pEIRE LG

»" -
h

b

L
a

v
)

.t",I{

X s W
RN e
s

Ty
Py
’

il

e

»

128

XA
-

b

WL e S L R N P AT T R RO L N S i
e R T P PR VL S W S W

/e
/e
/e
/*
/=
/*

program counters (input,

This program
are global
a counter.
the functions
externag! C
wait.

const
size = 5;
var
counter
it : integer;
result

procedure add (num,

begin

counter[num] :=
("counter ',

writeln
end,

_ext;
_fk
_wt

procedure
function
function

begin
for i := 1 to

counter[i]

result = fk,

if result = ©
begin
add (1,
_ext
end;
result :=
if result
begin
cdd
_ext
end;

result = _fk;

1 f result = ©
begin
add (3,
_ext
end,

result = _fk;

i1f result = ©
begin
add (4,
_ext
end,

result = _fk;

f result = @
begin
add
_ext
end .
fer 1+ = 1 to
begin
result

(s,

increments an array of
(shared memory).
Each counter is
_fk,
functions which perform the

orray[1. .size] of

Jorssssnnsnenes/

/e FILE 1 s/

Jressensonans/

five counters.

The function "add"®

_wt, and the procedure _ext.

output):

integer,

longint;

volue integer);

counter[num] + value;
num, ' is ',

cexternol;
longint;
longint;

cexternal;
cexternal;

stze do

= 9

19);

then

20);

then

25);

then

30) .

size do

counterfnum],

The counters
odds o value to
incremented concurrently by calling
These are
routines fork,

exit, and

-.,)

writeln ('Child
end;
end
/e

/* These functions are written
/* the routines fork,
int fk ()
{

return (fork ()):
{
int ext ()
!

exit (0);
$
int wt ()
{

int status;

return (wait (&status));
}

Veth o VG0 oAy T S S TR VT T, SR A

. result, Returned. ')

[everssranens/

FILE 1 o/

Jeesssnesssss/

exit,

in C to perform calls to
and wait.

+/

o/

Al

e a0ty
ia x.

W p e

LS

P
-15{\-.s»5'

® AN

adth

&y h]
ﬁ;ﬁ%hf{

5

('.1 xl"‘:’! L J

L
A

w

S P WV

N Ty T D S e v

..... g , T - T T L AR RSN, “-.u.ruf“ < f\fu“. i

g

) 2
—,l b’.
X
r
L .

.'.

r~—
v
v

Nt

hivide" 4
[

7

G om NV g N S
K -,‘-’ ','-'J'

INTRODUCTION TO MAN 3P

O
b [.
Q — A
Z kA ~
3 — "
€3] o
<9 \...
.J P »
?, < "
: .
= X
3 b
N
a .-(
», ?- .
>
l‘
.]
& d
2 »
3
X
r, Y
. "
\u .’
» 2
‘N
2 N
»] iy
2 2
b . 24
3 :
Z]
s ' Zd
7 X
g >
' -
- . oy x s s xoae g A - - I TTUS WL, - 2aasaana = «

NAME

INTRO(3P) DYNIX Programmer's Manugl INTRO(3P)

intro — introduction to Parollel] Programming Library

DESCRIPTION

These routines constitute the Paraltle! Programming Library,
which supports microtasking and multitasking in C, Poscal,
and FORTRAN programs. (For informotion on microtasking and
multitasking programming models, refer to the Bglance Guigde
to Pargllel Programming.) The Parallel Progromming Library
is not supported under System V (gtl universe).

The routines decribed here include the current Parallel Pro-
gramming library, /usr/lib/libpps.g. and the previous ver-
sion, /usr/lib/libpp.g. The older version is retained for
compatibility with earlier DYNIX releases. The routines
from the current Iibrary are linked into a program by
tncluding the ~ipps option in the ¢cc or |Id command line, or
by including the —ipps or —-mp option in the fortran or pas-
cal command line. The routines from the ofd Ilibrary are
linked by including the —Ilpp option. You must not !ink both
librories with the same program.

For an overview of how the current Paraliel Programming
Library routines are used, and for sample programs and
related information, refer to the Bglance Guide to Pgrgllel
Programming.

LIST OF FUNCTIONS
The foltowing routines support microtasking:
Nagme Appegrs on Page Pescription
9 m_fork m_fork.3p execute o subprogram in paraliel
m_get_myid m_get_myid.3p return process identification
m_get_numprocs m_get_numprocs.3p get number of chifid processes
m_kill_procs m_kill_procs.3p kil) ¢hild processes
m_lock m_lock.3p initialize and lock a lock
m_multi m_single.3p end single-process section
m_next m_next.3p increment global counter
m_park_procs m_park_procs.3p suspend child process execution
m_rele_procs m_pork_procs.3p resume child process execution
m_set_procs m_set_procs.3p set number of child processes
m_single m_single.3p start single—-process section
m_sync m_sync.3p check in at borrier
m_uniock m_lock.3p unlock o lock
The following routines support multitasking:
Name Appegrs on Pgage Description
9 cpus_online cpus_on!tine. 3p return number of CPUs on-1!ine
) s_clock s_lock 3p lock 0 locwn, return f unsuccessfu
|
E s_rnit_barrier s_woit_barrier 3p initialize o berrier
.
E Revision 1.9 86/08/23 1

AN, WG Nl

o,y
Y

"o e P N T R TP e A Tt e e,
S A A N S AR N

A N NN, "'. »
SRR VS Pty v)

]
~
’ -
.
!

N Y v
< L

t

L

P,
RS

'

2

v a2,

e v e v s
.y
L AR AP P

Foml

INTRO(3P)

libraory.

T W

The folliowing
lel programming. The brk and sbhrk routines ore availablie
without loading the Parglle)
the versions in the Parallel

brk(2)). but
librory aore necessary for compatibility with the rest of the

DYNIX Progrommer’s Manual

s_init_lock s_lock.3p
s_lock s_lock.3p
S_LOCK s_lock.3p
s_unlock s_lock.3p
S_UNLOCK s_lock.3p
s_woit_barrier s_wait_barrier.3p

INTRO(3P)

initialize o lock

lock a lock

lock a tock (C macro)
unliock a ftock

uniock a fock (C mocro)
wait at a barrier

routines support memory allocotion for parol-

Revision 1 9 86/08/23

Prograomming

library (see
Prograomming

A RN A N e AN I D 4

it AT
ey

e R N

RILARCL 4
w et

v

.

l."-l

-,

<3

EATSY
LLXE N

?%3““'3“ ST N T A U U UV OB U U N S SN N Y U DV Ny - S e W W) S0 %0 0% 879 4%0 00 8 0 0" b g g 00 g s
)
4
1
¢ o :
L)
KJ
N
L)
g INTRO(3P) DYNIX Programmer's Manual INTRO(3P)
W
: Naome Appegars on Page Descriplion
. S brk brk.3p change private dato segment size
? sbrk brk.3p change private daota segment size
' shbrk shbrk.3p chaoange shared dato segment size
N shfree shmal loc.3p dealliocote shared datc memory
shmal loc shmaltoc.3p allocate shared data memory
> shsbrk shbrk.J3p change shared dota segment size
ol The following routines constitute the previous version of
j the Parallel Prograoamming library, /usr/lib/1libpp.ga. ond are
v retained for compatibility with earlier releases:
Name Appears on Page Descriplion
\ 9 p_cpus_online p_cpus_online.3p get number of processors in syst
R em
q p_finit_barrier p_wait_barrier.3p initialize a barrier {FORTRAN)
: p_init p_init.3p initiolize shared memory and Atomi
W ¢ Lock Memory
L p_init_barrier p_wait_barrier.3p initialize a barrier
3 p_init_tlock p_lock.3p initialize a lock
o p_lock p_lock.3p lock o lock
p_shmalloc p_shmaliloc.3p gllocate shared memory
: p_unlock p_lock.3p uniock a lock
p_wait_borrier p_wait_barrier.3p wait at o barrier
B v
", The following routines are retained in the old Parallet Pro-
gromming Library for compotibility with eartier releases,
| but are not described elsewhere in these man poges:
v
P p_exit is equivalent to exit(3).
[
p_fexit is equivalent to the standard FCRTRAN routine
W
¥ fthallt.
[p_finit hos no effect.
)
)
]
A
%
2.
d
5
i
X
a
D
5
i:o Kevision 1 9 B6/08/23 3
U
[\
+
"
h)
"q
'
I
\..
’

oy . S RO
YA A AN Y L‘.!.“O.“l. e S 00 0ty ey

MRS CH. ARG CitSs

®
BACAOA PG CGLE CH IR NN N G, O

.,

