Eidgendssische
Technische Hochschule

Departement Informatik
Institut far

Zirich Computersysteme
Niklaus Wirth Ceres-Net:
A Low-Cost

September 1989

Eidg. tson:

Computer Network

Extending Ceres-Net
by a Mail Service

CH-8092 Zurich

Authors' address:
Institut fir Computersysteme

ETH-Zentrum
CH-8092 Zirich, Switzerland

© 1989 Departement Informatik, ETH Ziirich

R

Ceres—Net: A Low-Cost Computer Network

N. Wirth

Summary

This project report describes a local-area network, its hardware and software structure, and its
pratocol. The principal objective was to minimize the complexity of hard- and software, yet to offer
an adequate functionality and performance for a system of up to 30 workstations with local file
stores. The primary benefit of the achieved simple structure and low-overhead protocol is the
system's reliability.

Introduction

Ceres is a workstation designed for practically autonomous use. It is based on a 32-bit microprocessor
(NS 32000), a 2-4 MByte main store, and a 40-80 MByte disk store [1]. Ceres—Net, a local area network,
augments its capabilities, making communication between workstations possible, and thereby allowing
for the installation of dedicated machines providing file, print, and mail services.

The view of essentially autonomous workstations with support from servers via a network stands in
constrast to the distributed computing system based on disk-less computers. We prefer the former,
because it avoids bottlenecks and breakdown due to failure of a single component (disk server). The view
of a net as an auxiliary rather than a crucial facility allows the consideration of low-cost solutions. The
term "low—cost" applies to both hard- and software. In the former area it implies the need for a few
interface components only and a twisted-pair wire instead of coaxial cable. In the area of software, the
notion of low—cost implies a small set of relatively simple modules, a transparent structure guaranteeing
effectiveness, reliability, and robustness.

Our willingness to restrict the network to specific functions (in contrast to including/integrating all
connected stations into a single address space) should be rewarded by a structure of the network
software that is reasonably straight~forward. In particular, it should avoid additional complexity primarily
induced by generality—considerations. We refrain from introducing superfluous layers of abstraction that
hardly make sense in a local-area network, and restrict the system to three layers: the signal-level

(hardware) layer, the level incorporated by the (software) driver, and the application level defined by the
data packet format.

In this paper, which intentionally bears traces of a tutorial as well as a project report, we start by
presenting the hardware facilities on which Ceres-Net builds. This includes the SOLC packet format. We
proceed by specifying the procedural interface of the network driver module. This is followed by a
discussion of the Oberon system's metaphor which precludes the notion of indivudual processes, and of
the integration of network services in the Oberon single-process system. A presentation of the
communication protocol precedes the chapter on the file transfer service routines, the principal function
of Ceres—Net.

And finally, we show how the network module can be extended, thus gradually converting a workstation
into a server station, again without reliance on the concept of multiprocessing. The paper concludes with
some performance figures.

The hardware level

Ceres—Net is based on the principle of a bus, i.e. of a wire to which all participants are connected in the
same way by a transmitter and a receiver. Electrically, the net adheres to the RS-485 Standard, using a
twisted wire pair to transmit the balanced signal (Fig. 1). The Standard postulates that each transmitter

be capable of driving at least 32 receivers, and it garantees immunity against large differences in electrical
ground level between transmitter and receiver. At any time, only a single transmitter should be active.
However, the Standard ensures that even in the case of several transmitters becoming active (collision) no
physical damage may result. Unlike in the use of open-collector drivers, a collision cannot be detected by
concurrently monitoring the signal on the wire. It will be distorted, however, and such distortion must be
detectable by the receiver, making it necessary to provide redundancy that can be checked.

C [FN:U

— >

Tx

Fig.1. RS 485 Bus

Since asynchronous, byte-by-byte transmission is inappropriate for data rates greater than 20 Kbit/s,
redundant checking information cannot be attached to each byte, and hence a packet format is
necessary. Packets are transmitted as a whole in synchronous mode. Ceres-Net adopts the standard
SDLC-format (synchronous data link control).

SDLC packets may be of any length (not necessarily a multiple of 8). Beginning and end are marked by a
"flag", consisting of 6 consecutive ones. If such a sequence is detected within the data packet, a zero is
inserted by the transmitter's encoder and removed by the receiver's decoder. Furthermore, SDLC specifies
that the first 8 bits of a packet be a destination address, and the last 16 bits be a cyclic redundancy
checksum CRC (Fig. 2).

8 8 16 8
Plag ‘dest [data | CRC l flag I

Fig. 2. SDLC Packet Format

The interface between the Ceres processor bus and the network consists of a Zilog 8530 Serial
Communications Controller chip (SCC). The only additional components are drivers on both sides (Fig
3). The transmission rate is 250 Kbit/s.

The "cheapness" of this configuration rests on the following characteristics:

1. Data are transferred under control of the central processor. No facilities for direct memory access
(DMA) are needed. This technique is appropriate for data rates less than 1- Mbit/s.

2. Serialization and deserialization of data as well as redundancy generation and check is performed
by the SCC.

3. The SCC contains an address filter which, in accordance with the packet format, suppresses
attention to packets not addressed to the particular station.

The SCC chip offers much flexibility that remains unused. It can be used in asynchronous, synchronous,
SDLC, or SDLC loop mode; it contains two transmitter/receiver pairs, of which one remains idle. All this
would not merit to be mentioned, were it not for the fact that this flexibility complicates both the chip's
interior and its use. The unused facilities cannot merely be ignored; certainly not for the controller's
initialization. They even cause serious difficulties, if incompletely documented.

Do-D7

3.6MHz
D
= Net

o | T
Sel,' T ‘q > >

645

s DsS3695
Rx
A2,A3
A
INT'
Int
Fig. 3. SCC Interface
The SCCsoftware interface

The purpose of the module called SCC is to provide a procedural interface to the network. On the one
hand it should offer all the functionality given by the hardware, on the other hand it should shield the
hardware from inadvertent use and provide the programmer with an appropriate abstraction.

The obvious abstraction here is the data packet and the operations to send an receive a packet. This
implies the definition of a packet format as a data type. A Ceres—Net packet consists of two parts: the
header and the data. The header is defined as a record type, the data as any sequence of bytes.
TYPE Header =
RECORD valid: BOOLEAN;
dadr, sadr, typ: SHORTINT;

len, destLink, srcLink: INTEGER
END

The procedure used to send a packet is defined as
PROCEDURE SendPacket(VAR head: Header; VAR data: ARRAY OF BYTE)

and causes the packet to be transmitted in the form shown in Fig, 4.

dadr

lﬂag sadr |typ length |d5tLInk

srclink | data ! CRC [flag

Fig. 4. Ceres-Net Packet Format

The procedure requires the data to be passed as a single array parameter. This is necessary, because the
sending of the packet occurs under strict timing constraints. A byte must be supplied (under processor
control) every 35 ms. This implies that the processor must not be interrupted during transmission of a

packet. We limit this period to 18 ms by postulating a maximum packet size of 512+9 bytes (header
length = 9).

One might expect a similar procedure for receiving a packet. However, we chose a different scheme in
recognition of the fact that sending and receiving are not entirely symmetric pictures of the same action.
In particular, transmission of a packet must be regarded as a single action in which both the sending and
receiving stations participate synchronously. The timing is dictated by the sender. As a consequence, the

receiver's attention must be evoked by an interrupt and the packet stored in a buffer. It is helpful to
regard the interrupt handler as an extension of the transmitter process. Typically, the buffer is handled as
a gyclic store without reflection of a packet structure, and it is the agent effectively decoupling the events
of sending and ultimate receiving. Bytes can therefore be retrieved individually from the buffer without
timing constraints.

A read procedure with an array parameter as packet destination would then have to move the data from
the (hidden) cyclic buffer into the parameter. This would in many cases be an unnecessary action and
constitute an avoidable overhead. The logical solution is to pravide byte-wise access to the received data
sequence, thereby avoiding another buffer and also leaving the choice of handling errors to the program
receiving the data. The following set of procedures is provided for receiving:

PROCEDURE ReceiveHead(VAR head: Header);
PROCEDURE Receive(VAR x: BYTE);
PROCEDURE Available(): INTEGER;
PROCEDURE Skip(n: INTEGER);

After the call ReceiveHead(h), A.valid means "a packet has been received and h is its header". Receive(x) is
called to obtain the individual bytes of the data part, whose number is given by h.len. Skip(n) may be used
to rapidly skip over unwanted packets.

A few details may be worth recording about the implementation of the 5CC interface. Before sending, it
must be established that the line is free. This is done by inspecting the hunt bit of the receiver status. If
the line is busy, sampling is repeated after a certain delay. By making the delay station—-dependent, the
danger of collision is reduced, although not eliminated.

The sending process itself occurs after forcing the station’s address into the sadr field and after barring
interrupts, and it is highly time-critical. For each byte, the loading into the transmitter data buffer is
preceded by polling the buffer-empty status bit. After sending the data part, the transmitter driver must
remain enabled for about 0.2 ms in order to allow the SCC to transmit the CRC and the terminating flag
(undocumented feature).

The first byte received after detecting the leading flag is compared by the SCC with the station's address. If
they match, the processor is interrupted. This filtering process is essential to reduce the number of
interrupts to those pertaining to the actually addressed station. (One address bypasses the filter and
serves for broadcasts.) The most time critical part is the interrupt; the bytes following the address byte
must be picked up in time in order to avoid the data overrun condition.

The end of a packet is detected when the end-of-frame bit of the receiver status is set for about 20 us.
Then the CRC and overrun status bits are checked. If either an error is indicated, or if the packet would
overflow the buffer, the buffer is reset and the packet is effectively ignored.

The SCC interface does neither interpret the source address, the type, nor the link fields of the header.
From a logical point of view, the definition of those fields belongs to a higher level of the abstraction
hierarchy. Also, it is worth noting that at this level no communication protocol is defined, packets are
received (and possibly ignored) without acknowledgement. The entire driver module, including its
time~critical parts, is programmed in the language Oberon extended by a statement to access device
registers and a facility to install a procedure as an interrupt handler.

Afacility for file transfer

When planning a remote access facility, one must consider the metaphor of the operating system in
which the new function has to be embedded. The metaphor of the operating system Oberon [3] is that of
a single process, sequentially interpreting (dialog-free) commands issued by its user. We now relax this
scheme in the sense that commands may originate from more than one source, say, the mouse, the
keyboard, and the network. This is realized by not only polling the mouse and the keyboard in Oberon's
central loop, but by also allowing the installation of handlers that become part of the central loop and
poll their input source, in this case the SCC's buffer. Remotely requested actions can thus be inserted in

the sequence of actions ordered by the "regular" operator.

The appropriate view of interaction over the net is thus the remote procedure call [4] . It supposedly can
be considered like a regular procedure call (without the possibility of reference parameters), and is
implemented by sending the procedure's identification and its (value) parameters, followed by receiving
an acknowledgement with the remotely computed result. This concept fits the Oberon metaphor ideally,
because each call constitutes an isolated action and does not presume a specific system state. Neither
does the remote procedure call require a protocol, simply because protocols inherently are specifications
of legal sequences of information exchanges and ensuing actions.

If we employ the remote procedure call metaphor to a file transfer facility, the individual commands’
parameters may become rather voluminous: they are files. In particular, the length of a file may easily
exceed the maximum length of a data packet. The individual call must obviously be broken up into a

sequence of calls each carrying a piece of the file as its parameter. In order to synchronize sender and
receiver, each call is acknowledged individually.

The information exchanged over the net evidently must obey a simple protocol. Since the communicating
partners contribute information in strict alteration (without concurrency), their protocol can be specified
by a syntax using Extended BNF-notation. We distinguish the contributions of the partners by italizising
those of the requestor. A transaction for obtaining a file has the syntax

ReceiveTransaction = SND username password filename
(DATo data ACK1 {DATi data ACKi+1} | NAK | NPR).

The symbols SND, DAT, NAK, and NPR are transmitted in the type field of the packet headers; username,
password, filename, and data are the parameters transmitted as the packet's data part. DAT and ACK are
encoded as the packet's sequence number (modulo 8) and enable a check against missing packets. NAK
signifies that the requested file does not exist, NPR that the requestor is not permitted to receive the file.

Note that the acknowledgement for the data packet i carries the number i+1, being at the same time the
request for the next packet. With the exception of the last, an acknowledgement is simultaneously the
request for the next data packet.

Analogously, a transaction for dispatching a file follows the syntax:

SendTransaction = REC username password filename
(ACKo DATo data ACK1 {DATi data ACKi+1} | NAK | NPR).

In this case the partner receiving the request (sometimes called the target) effectively becomes the
master: it requests a data packet by sending an ACK packet with the appropriate sequence number.

In a facility based purely on the remote procedure call metaphor, a failure to transmit a packet simply
causes no answer to arrive at the requestor, which then may choose to repeat the request. In the case
where the transaction is broken up into a sequence of transmissions, the failure of an individual
transmission must be handled by the network facility through retransmission. We recall that collisions,
although rare, lead to such failures: the packet in question does not appear to have arrived at the receiver
(i.e. the detection of a CRC error caused the driver to suppress the packet).

We here follow the principle that a retransmission occurs only if requested. Hence, the receiver of the data
will have to detect possible failure. This occurs through a timeout, i.e. a retry request is sent after a time
span T0 during which no data were received.

PROCEDURE ReceiveData(F: Files.File; VAR done: BOOLEAN);
VAR seqno, retry: INTEGER;
BEGIN seqno := 0; retry == 2;
(xassume first data packet receivedx)
LOOP
IF head.typ = seqno THEN
INC(seqno); retry := 2;
Send(ACKsegno);

Receive bytes and write file F;
IF end THEN done := TRUE; EXIT END

ELSE DEC(retry);
IF retry = 0 THEN done := FALSE; EXIT END;
Send(ACKseqno)

END;

ReceiveHead(T0)

END
END ReceiveData;

An acknowledgement, and thereby the request for the next packet, is emitted after receiving the head, but
before transferring the respective data from the receiver buffer to the file. This makes it possible that the
sender may read the next packet from the file into its transmitter buffer at the same time as the receiver
transfers the previous packet to the file, hence doubling the overall transmission speed. This scheme relies
on the assumption that producing a packet (reading from disk) and consuming a packet (writing on disk)
take about the same amount of time.

PROCEDURE SendData(F: Files.File);
VAR seqno: INTEGER;
buf: ARRAY N OF BYTE;
BEGIN seqno:=0;
LOOP Read from file into buffer;
REPEAT Send(seqno, buf); ReceiveHead(T1)
UNTIL head.typ # ACKsegno;
INC(segno);
IF head.typ # ACKseqno THEN (xfailurex) EXIT END;
IF end THEN EXIT END
END
END SendData;

The choice of the timeout values TO and T4 depends on the expected time for a transmission (yielding a
lower bound) and the actions of the partner that one wishes to allow before emitting the
acknowledgement (yielding an upper bound). The value T1 should allow for the specified number R of
retries of the receiver, before the sender abandons the interaction, i.e. T1 = R%TO.

A second complication due to the breaking up of a transaction into parts is the need to reserve the
partner exclusively to the ongoing process. This implies that - in addition to the destination filter in the
SCC - a source filter must be provided, which eliminates packets arriving from other sources. in our
implementation, this filter is contained in the procedure ReceiveHead, which in tumn calls SCC.ReceiveHead,

A simple, distributed name service

Individual stations in the network are characterized by a unique number. Evidently, a partner should be
addressable by a name rather than a machine number. The following method allows to determine the
address of a machine given its name without requiring a centralized name directory.

If, before a transaction, the partner's station number is unknown, a name requestis broadcast, i.e. sent to
all partners on the net (packet type = NRQ). A special address value is provided for this purpose which
passes all address filters. The packet's parameter is the desired partner's name. Upon receiving a name
request with a name matching the receiver's name, the receiver emits a response packet (NRS); its
machine number is contained in the header's sAdr field.

NameTransaction = NRQ name [NRS].
in order to reduce the traffic due to name requests, each station may carry a table of name/number pairs

established by name requests (a cache). In practice, it turns out that a single entry is quite sufficient,
containing the identification of the last partner.

Integration of the server concept in the Oberon metaphor

The essence of the Oberon metaphor is the absence of concurrent processes (with the exception of
interrupt~driven buffer handlers which are transparent to users). This apparently excludes the presence of
a server process, unless the server is the only process in existence.

At the core of the Oberon system lies the central-loop, in which input devices — keyboard and mouse -
are polled. If an input event is detected, control passes to an appropriate algorithm through calling an
installed procedure in an object designated by either cursor or caret position. Additional procedures may,
however, be installed in handlers which are also activated each time control passes through the central
loop. Servers may thereby be included in the system without compromising the rule that individual
actions are logically uninterruptible. Response time cannot be guaranteed, however, and we refrain from
introducting even priorities among the input devices signalling events: the network simply becomes an
event source in additon to keyboard and mouse. All time-critical actions are confined to
hardware-driven interrupt handlers, which effectively decouple partners through their data buffers, The
lack of arbitrary interruptability and of priorities is compensated by an increase in efficiency due to the
absence of process switching (i.e. diversions of attention), and by a decrease of complexity because of
absence of mutual locking mechanisms.

The handler for the file transfer facilities described follows the protocol syntax:
Transaction = {SendTransaction | ReceiveTransaction | NameTransaction} .

PROCEDURE Serve;
VAR head: SCC.Header;
BEGIN SCC.ReceiveHead(head);
IF head.valid THEN
IF head.typ = SND THEN ... SendData ...
ELSIF head.typ = REC THEN ... ReceiveData ...
ELSIF head.typ = NRQ THEN
IF receivedName = MyName THEN Send(NRS) END
ELSE SCC.Skip(head.len)
END
END
END Serve

A central print server

The scheme described so far lets every station act both as a requestor (master) and a target (server), and
all stations feature the same capability; they form a homogeneous society. In a typical laboratory or office
environment it is, however, sensible to centralize certain services. For example, a station may be
designated to serve as a file store for common system modules and/or data files, available to anyone at
any time. It is probably economical to install a central printer fed by one machine but available to all
through the network. A third example is a server storing and forwarding electronic mail.

The straight-forward solution to implement additional services in a distinguished station is to extend
both the procedure Serve and the list of possible requests. in the case of requests for "small actions” such
as passing a short message, indicating a central time and date, delivering a directory of a mailbox, etc,, the
straight—forward solution is not only simple but also quite adequate. In the case where the requested
action is time-consuming, such as printing a page, it is inadequate. This is because under the Oberon
metaphar the server's processor is not only unavailable when truly engaged in computing the print image,
but also when waiting for the printer becoming ready for the next page. The acquisition of the processor
for such lengthy time spans is clearly unacceptable, and fortunately also unnecessary.

The Oberon central printer server operates as follows: First, a requestor sends (i.e. requests the reception
of) a file. This request characterises the file as a print file, and the (file) server accordingly inserts it into a
queue instead of registering it in the general file directory. The (print) server, when recognizing the queue
to be non-empty, starts processing the (next) element in the queue.

10

The queue effectively constitutes the interface between the two servers. A few additional global variables
reflect the state of the printing activity, making it possible to release the processor while the printer
processes the page. The variable Pstat assumes the following values, reflecting the successive phases of the
printing activity:

0. ready for next printing task.

1. ready for processing next page.

(reading file and computing print image)
2. ready for printing.
3. printing.

The processor is active in phase 1only, the printer in phase 3. Phase 2 extends in time, only if the printer is
detected to be not ready (e.g. due to lack of paper). The server routine is now extended as sketched
below:

PROCEDURE Serve;
BEGIN SCC.ReceiveHead(head);
IF head.valid THEN (xserve netx)
IF head.typ = SND'THEN ...

ELSIF head.typ = PRT THEN
receive file and register it in print queue; INC(noftasks)
ELSE SCC.Skip(head.len)
END
END;

IF noftasks > 0 THEN (xserve printerx)
IF Pstat = 0 THEN (xready for next print tasksx)
IF printer ready THEN
OpenfFile(next in queue); Pstat := 1
END
ELSIF Pstat =1 THEN (xready for generating next pagex)
IF end of file THEN
remove queue element; DEC(noftasks); Pstat := 0
ELSE
Read file and compute image up to start of next page;
Set nofcopies; Pstat := 2
ENDe
ELSIF Pstat = 2 THEN (xready for printing next pagex)
IF printer ready THEN Start printer; Pstat := 3 END
ELSIF Pstat = 3 THEN (xprintingx)
{F printing done THEN
DEC(nofcopies);
IF nofcopies > 0 THEN Pstat := 2 ELSE Pstat := 1; ClearPage END
END
END
END;
Other Servers
END Serve

The global variables needed to record the print server's state are (in addition to Pstat and the queue of
print tasks) noftopies and a file rider specifing the position up to which the file had been processed.

We emphasize that this simple scheme allows for quasi-concurrent file transfer and print image
computation. Naturally, a file transfer can only take place while the print task is in phase 1 or phase 3. As
the computation of a typical page takes less than a second, this constitutes no serious handicap.

11

Conclusions

The main purpose of the Ceres—Net project was to demonstrate that a reliable, simple—to-use network
can be constructed at very low expense, if one is willing to concentrate on essential functions and to
dispense with features and performance seldom used and rarely needed. The term low-cost is not
restricted to material and financial aspects, but also to structure and complexity. A system based on
perspicuous principles and justifyable features is easier to explain and understand, and hence needs no
so-called maintenance. Extensions are feasible without undue complications and the danger of
inadvertently impinging on the existing facilities.

The use of a relatively low-speed transmission line may surprise the reader. it was chosen because of the
relative simplicity of the required hardware, and principally because it is evident that in an organization of
moderate size equipped with powerful workstations using their own disk-stores, network utilization is
quite low. It is virtually restricted to communication with the printer, the file distribution server, and the
electronic mailer. Hence, the use of a more expensive transmission system would not be justified. A gain
in actual data transfer speed would hardly materialize, because it is limited by the speed of file reading
and writing. The currently used net is a good match, as shown by the following performance figures:

Ceres—1 Ceres-2
File reading/writing (32032, 10MHz) (32532, 25 MHz)
in blocks of 512 bytes 15.2 8.1 s/MByte
byte-wise 80.0 24.0 s/MByte
Transmission of data stream (512 byte packets) 36.5 s/MByte
Transmission of files 115.2 75.5 s/MByte

The modular structure of the network software is shown in Fig. 5. A measure of its low complexity is
evident from the following figures.

Module lines of source code bytes of object code
Net 315 3060
Server 400 4212
SCC 151 1108

(Note: Server s the version of Netextended by the printer facility.)

A central point of interest was also the integration of a network facility in the Oberon operating concept,
which dispenses with the notion of multiprocessing, where task switching is left under the explicit control
of the user issuing commands. Although the use of a network inherently involves several processors, the
notion of conceptually uninterruptible commands proved to be useful and appropriate even in this case.
The resulting simplification of the implemention is considerable. Our experience teaches that the genuine
need for multiprocessing, i.e. for the possibility to freely spawn new processes and to switch the processor
at arbitrary moments, should be carefully justified before that facility is introduced. If the need is not
clearly established, multiprocessing may well belong to the problem set rather than the solution set.
Inflating a system with rarely used features is easy and common practice. Optimizing the ratio of utility
and reliability vs. required resources and complexity is much harder, but it remains the ultimate challenge
of every design engineer.

References
1. H. Eberle. Developmentand Analysis of a Workstation Computer. Diss. ETH No. 8431 (Dec. 1987).

2. A West and A. Davison. CNet — A Cheap Network for Distributed Computing. TR-120,
Computer Systems Laboratory, Queen Mary College (1978).

3. N.Wirth and J. Gutknecht. The Oberon System. Software — Practice and Experience, 19.

12

4. B.. Nelson. Rem

Texts
Oberon

Net

ScC

Files

Fig. 5.

Texts
Oberon

Module Structures of Net and Servers

ote Procedure Call. Report CL5=81-9. Xerox Palo Alto Research Center (1981).

Net

PrintServer

scC

Files

Fonts

Pmaps

13

Extending Ceres—Net by a Mail Service
N. Wirth

1. Concept and Background

An important component in a modern, distributed computer system is the electronic mail server. The
Ceres—Net service as described in [1] caters for a file distribution and a printing service. However, the
server was designed to be easily extensibie. Here we describe the addition of a mail server.

in the list of requirements, priority was given to quick response and robustness. This dictates a simple
structure of mailboxes and a restriction to essential and fundamental functions. The complexity of the
programs to send and recieve messages located in every workstation is minimized by integrating mail
operations in the existing net service module and by the transmission of messages as plain texts. Thereby
they automatically become editable objects in the Oberon System [2] and it is possible to reduce the set
of mail commands to four functions only: Sending a text, receiving the mailbox directory, receiving a
message selected from the displayed directory, and deleting a selected message. We consciously refrained
from introducing any further bells and whistles.

The first step in the course of development was the addition of access to the existing (file and printer)
server over a low-speed V24 (RS232) line, thereby bringing the server within reach of remote users via
telephone connection (via the University-wide broadband network Kometh and central telephone
interconnects). The same V24 line is used by the server, if messages are to be exchanged with the
Department's central mail server; we call such messages "external” mail, in distinction to messages sent
directly to the Ceres-Server (via Ceres—Net or telephone line), which are called internal mail. The global
configuration of components is shown in Fig. 1.

Therefore, we first describe the extension of the system by the V24-line server. Then we discuss the

addition of the internal mail service, and conclude with the description of the extension to cater for
external mail.

Ceres-Net RS-485, 250Kbit/s

server

workstations

Kometh 9.6 Kbit/s

telephone lines Deptmailserver

| Ethernet

Fig1. Network Configuration

2.The Line Server

The basic Ceres server system is shown in Fig. 2. The dark lines exhibit the additions of the print service
facilities to the original systerm designed as file server only.

14

The additon of a server in the Oberon system implies the installation of a task. Such a task is called each
tirme control circulates in the central loop. For each such activation, the task polls its command source
(either a device such as the net or line interface, or a queue) and processes the request, if any is pending.
Each installed server may hence be regarded as an interpreter of remote procedure calls.

Printer
! i
NetServer PrintServer
Disk PrintQueue

Fig.2. Net- and Print Server Configuration

The configuration resulting from the addition of the Line Server is shown in Fig. 3. It suggests a strong
similarity of the Net- and Line Servers which is supported by the fact that both servers offer the same
functions of file transfer. The differences lie at the level of data transport.

Kometh Ceres-Net
Printer
T-Box T
LineServer NetServer PrintServer
Disk PrintQueue

Fig.3. Net-, Line-, Print Servers

The line is not only slower than the net connection by a factor of 25, it is also potentially much less
secure, since it may involve telephone lines over wide distances. The basic, asynchronous mode of
transmitting individual characters is therefore inapplicable. A packet mode is recommended, and this
requires the definition of a packet format. The format used here was defined by M. Muller (for purposes
ranging beyond the Ceres server connection) and is described as follows:

1. Astream of bytes is broken up into packets of at most 256 bytes; the last packet is identified by its
length being less than 256.

2. Each packet starts with a header byte containing, apart from packet sequence numbers, a type tag.
The following packet types are provided:

data packet data acknowledge

15

open packet open acknowledge
close packet close acknowledge
abort packet

The packet types suggest the following protocol:
Transaction = Open OpenAck {Data DataAck} Close CloseAck.

Failures are, at this level, not indicated by specific NAK packets, but manifest themselves by timeouts or
incorrect sequence numbers, in which case a retry is initiated by the sender.

Individual commands are encoded in (the data following the header byte of) the open packet. (In the Net
Server, the commands are identified by the packet type tag itself) In analogy to the Net Server, there exist
the following commands with parameters as shown below:

SND username password filename
REC username password filename

The partner's reply follows not in its OpenAck packet (which is supposedly invisible at this level), but in
the subsequent data packet, which consist either of a (single character) acknowledgement followed by
further packets representing the requested data, or of a (single character) negative acknowledgement (for
example, if the requested file does not exist). This, in comparison with the Net Server's protocol,
increased complexity is due to adoption of the multilevel protocol dictated by the 1SO Standard. Whereas
in the case of a request for a non-existing file, the Net Server exchanges exactly 2 packets (SND, NAK),
the Line Server exchanges six packets (Open, OpenAck, Data, DataAck, Close, CloseAck).

Considering the required robustness and the potential unreliability of lines over long distances, packets
need to be checkable for correctness. For this purpose, they are encoded for actual transmission. First, we
take into account that some data links interpret rather than transmit certain ASCII characters; these must
be avoided as data. Hence, groups of 3 bytes are transmitted as 4 6-bit items, each encoded as an 8-bit
byte in a way to avoid control character values. Second, a checksum is computed over the encoded data
and appended. The precise encoding is specified in the Appendix. The maximal length of a transmitted
packet is therefore not 256, but, including an additional header, 345 bytes. The effective data rate is 3/4
of the actual transmission speed. This is evidently the price to be paid for compliance with outdated but
unremovable Standards.

The multilevel structure of the protocol definition is mirrored by the procedures to send and receive a
data stream. In order to allow the reader a comparison with the scheme for the net [1], whose protocol
design was under local control, the relevant procedures are listed below. As in the case of the net,
procedure SendData is called after receiving a Send command and assurance that the file exists.

PROCEDEDURE SendData(F: Files.File; VAR res: INTEGER);
VAR k: INTEGER; x: CHAR;
R: Files.Rider;
buf: ARRAY PakSize+2 OF CHAR:
BEGIN Files.Set(R, F, 0);
LOOP k :=0;
LOOP Files.Read(R, x);
IF R.eof THEN EXIT END;
buf(k] = x; INC(k)
END;
Send1(k, buf, res);
IF(res # 0) OR (k < PakSize) THEN EXIT END;
END
END SendData

Procedure Send1 covers failures and retries:

16

PROCEDURE Send1(len: INTEGER; VAR buf: ARRAY OF CHAR; VAR res: INTEGER);
VAR retries, typ, plen; INTEGER;
BEGIN mysno = 1-mysno; retries := 3;
SendPacket(myrnox2+mysno+10H, len, buf);
LOOP ReceivePacket(typ, plen);
IF typ <= 0 THEN (xerrorx) DEC(retries);
IF retries = O THEN res := 1; EXIT END;
SendPacket(mymox2+mysno+10H, len, buf)
ELSIF typ DIV10H =7 THEN (sabortx) res = 2; EXIT
ELSIF typ DIV 2 MOD 2 = mysno THEN res := 0; EXIT
END
END
END Send1

procedure SendPacket performs the 8-to-6 bit/byte encoding, and procedure ReceivePacket the
corresponding decoding. The first parameter indicates the packet type and whether a timeout or a
checksum error had occurred (typ = 0). We note that, in contrast to the scheme used in the net server,
the sender repeats transmission in the case where no acknowledgement is received (timeout). This may
lead to confusion, if the receiver sends its acknowledgement too late (after the sender's timeout), and this
possibility calls for a countermeasure. It is realized in terms of sequence numbers carried by each packet
(in the header byte), one reporting the sender's, the other the receiver's current count represented by the
(global) variables mysno and myrno. If suffices to use numbers modulo 2.

3. Internal Mail

Primarily, we expect an electronic mail system to be simple and reliable to use, and that service should be
fast, practically instantaneous. We gladly accept the absence of enhancements offered to achieve
so—called user—friendliness. This convenience must rather stem from a proper integration of mail service
in the workstations environment, in particular its text editor. The Oberon system offers ideal conditions to
realize this integration. Messages and directories appear as texts, and are thus editable and mergeable
with all other texts. A welcome consequence is that the mail system can be restricted to perform the
actions of pure transmission. The following four commands are made available on every workstation:

1. Net.SendMail. This command typically appears in a tool text and can then be activated by a single
mouse click. The message to be sent is supposed to be displayed on the screen and is selected by
placing Oberon's marker in the viewer containing the message text.

2. NetMailbox. Activating this command, which typically also appears in the net tool text, causes the
directory to be fetched and displayed in a new viewer as a text. Each line corresponds to a message
stored in the box, lists the name of the sender, and date and time of arrival.

3. Net.ReceiveMail. This command, displayed in the menu of the viewer showing the directory, fetches
the message previously selected in the listed directory. The message is displayed in a new viewer.

4. Net: DeleteMail. This command serves to remove the message selected in the listed directory from the
mailbox.

These commands can be regarded as remote procedure calls to the server, which retains no state
influencing the interpretation of any subsequent command. A message to be sent must be headed by one
or more lines specifying recipients. This is expressed by the following message syntax:

message = recipient {recipient} messagetext.
recipient="To:" name CR.
name = letter {letter | digit| "."}.

3.1. Command protocol

17

The four mail service commands are added to the set of existing commands for file transfer and printing.
Their detailed encoding differs slightly between net and line transmission for reasons indicated previously,
and it is specified in the Appendix. The respective protocols are as follows (shown for the net):

SendMail: RML username, password (ACK {data ACK} | NAK | NPR).
Mailbox: DIR username password (ACK {data ACK} | NAK| NPR).
ReceiveMail: SML username password msgno (ACK {data ACK} | NAK | NPR).
DeleteMail: DML username password msgno (ACK | NAK | NPR).

The packets sent by the master (workstation) are printed in italics. NPR denotes a negative
acknowledgement due to rejection of access permission. In the case of line transmission, the command
identification (first packet) is transmitted as parameter of the open packet {service request).

3.2. Mailbox Structure

The implementation of the mailbox is determined by the following considerations:

~ Robustness. In order to avoid loss of data in the case of equipment failure, all mail data are to be
stored on a non-volatile medium (disk). The data associated with different users are to be
appropriately disjoint.

- Speed. Access to a message must be fast, and is therefore restricted to serial reading of the entire
message. In particular, a directory access is to be effectively instantaneous, and must therefore involve

no access to individual message bodies. As a consequence, the directory is to be stored contiguously
as a whole.

— The mailbox is considered as a temporary storage relay of messages on their way, and not as a
permanent message archive. A limited, even small number of message slots, and a limited, relatively
small storage capacity for message bodies is therefore acceptable.

From these premisses it was concluded, that the simplest and most effective way to represent the
mailbox data is to associate with each user a single file. Its directory is contained as a header of fixed
length which fits into the file's first two disk sectors. The directory has the following data format:

MailDir= ARRAY 31 OF MailEntry;
MailEntry = RECORD pos, next: INTEGER;
len: LONGINT;
time, date: INTEGER;
originator: ARRAY 20 OF CHAR
END

The subsequent part of the mail file is considered to consist of blocks (of 256 bytes), and each message
occupies an integral number of blocks. Analysis of usage reveals that most messages require very few
blocks only. Block occupation is recorded in the block reservation table. Accepting a maximal file length
of 64k bytes, the table consists of 256 bits (8 words) and is placed at the very beginning of the file (in
front of the directory). The index of the first block of a message is given by the pos field in its directory

entry, and the message occupies a number of contiguous, adjacent blocks. The field next is used to link
the directory entries in the order of message arrival.

3.3. System Structure

The foregoing explanations suggest to incorporate the four mail commands in the existing net and line
server modules, in particular because they are interpreted as remote procedure calls and give no cause for
the introduction of new processes. Due to the straightforward organization of the mailbox, the routines
interpreting the commands are conveniently placed in those modules. The same holds for the programs
residing in the workstations: The four mail routines are easily incorporated in the modules implementing
file transfer.

The only reservation applies to the SendMail command. Not only is insertion of a new message somewhat

18

more complicated than its localization and reading, but it may involve distribution of a message to
several, even many or all mailbox owners. A decoupling in time of message reception and distribution
(called dispatching) appears as recommended. It implies the introduction of an additional server process
(called Mailserver) which is fed by a queue of tasks (called MailQueue), and whose only function is the
dispatching of arrived messages. The resulting system structure is shown in Fig. 4.

Kometh Ceres—Net

-

Mailbox Printer
T-Box

T ! T

MailServer LineServer NetServer PrintServer

T i |

MailQueue Disk PrintQueue

T

Fig. 4. Net-, Print-, Line-, and Mail Server

The mail queue has exactly the same structure as the print queue. It is a circular buffer of tasks, namely
messages represented as text files to be dispatched.

Task = RECORD file: Files.File;
userno: INTEGER
END

As an aside, we note that print- and mail tasks are temporary files. They are not registered in the file
directory, and are purged after processing.

3.4. Access Permission

Every command is accompanied by an identification of the user (id) and a password (pw). The
identification is an abbreviation, typically consisting of 2 or 3 letters, the password is encoded as a (long)
integer. The server stores a table of id/pw pairs which allows to check the acceptability of a command.

In the case of mail service, abbreviated names are a (widespread) nuisance, because the sender must
remember these codes. We instead impose that each user be addressed by his (her) full last name, and
the table accordingly also registers that name (up to 20 characters). The table may also serve to hold
accounting data.

4. External Mail

The last step in the sequence of extensions introduces the possibility to send messages to and to receive
them from an external source, a central mail server. Since that source is accessed over the V24 (RS232)
serial line, only the line- and the mail servers are affected.

Receiving messages from the external server proceeds in principle like receiving messages from a client;
the message is inserted in the mail queue. However, the central server adheres to a Standard format for
messages, in fact a subset of X400 called CX400. Hence, these messages must be decoded, in particular
their header must be analysed. Apart from this, dispatching occurs like in the case of internal messages.

19

Sending messages to the external server requires that they be encoded according to CX400. Also, the
server must now be able to act as a master, opening the connection over the line. As the line is relatively
slow, and in particular because the line may be occupied, or because the external server may be
{temporarily) unavailable, a decoupling in time of dispatching and transmission is indispensible. The
consequence is the introduction of a third queue containing encoded messages to be exported to the
external server. We call it ExportQueue, and it has exactly the same structure as the other queues. The
resulting system structure is shown in Fig. 5, and the CX400 message encoding is specified in the
Appendix.

Kometh Ceres-Net

—

Mailbox Printer
! | ! !

MailServer ‘—‘l LineServer NetServer PrintServer

MailQueue ExportQue Disk PrintQueue

1 ,

Fig. 5. Servers including External Mail

When dispatching a message, an external recipient is recognized by the MailServer when the recipient's
name is followed by an address. Furthermore, a subject may be indicated which is recorded in the CX400
message header. The extended message syntax is as follows:

message = recipient {recipient} [subject] messagetext.
recipient="To:" name ["@" address] CR.

address= {character}.

subject= "Re:" {character} CR.

Internal recipients cause a direct dispatch into the user's mailbox. External recipients cause encoding and
insertion into the ExportQueue. (If several recipients contain an address, the message is forwarded once
and carries all recipients in the encoded header.)

4.1. The External Mail Protocol

Establishing a connection between the Ceres server and the external server may be a lengthy operation. It
is therefore advisable to seek connection in certain intervals of time only, and then not only to transmit,
but to exchange accumulated mail. This is done according to the following protocol in which italics
denote entities sent by the partner which established the connection (the master).

Exchange = Open {Msg} Term {Msg} Term Close.
Msg = Data {Data} Ack.

— Msg represents a mail message and consists of a sequence of non-empty data packets. Messages to
be sent are taken from the export queue, messages received are inserted into the mail queue.

- Ackis a single (data) packet with length O (not to be confused with the DataAck packets following
each data packet at the lower transport level). Each message is individually acknowledged at this level,
in order to let the sender discard the transmitted message.

20

— Term s a single (data) packet with length 0 and signals that all messages had been transmitted.
— The Open packet specifies the mail exchange request and the requestor’s identity.

If the external mail server requests an exchange, the request arrives through the line like any other
request for service and is identified by its cx400 parameter. If the need for an exchange is recognised by
the Ceres Server (export queue non-empty), the line connection must first be established. This process is
fairly complicated and requires further explanation.

4.2. Establishing the Connection between the Servers

The server is tied to the univerisity-wide broad-band net, which offers individual 9600 bps lines via a tap
called T-Box. The box is either in command mode or in data mode. In the former it accepts commands,
such as "call nn", where nn is a port number. These commands are sequences of ASCI characters
terminated with CR and evoke replies also consisting of characters. This scheme is suitable for text
terminals operated by human operators, but ill~suited for computer-driven ports. Successful connection
causes a reply ("call completed to nn") to appear at the partner's T-Box, whereupon both T-Boxes switch
to data mode representing a transparent data line. The fact that a text rather than an encoded packet
appears when a connection is established by a partner, requires that plain text must be "swallowed” by
the packet receiver routine.

In passing, we note that the T-Box can be put into a quiet mode, where replies to commands are
completely suppressed. Unfortunately, this includes replies of commands issued directly, such as "call”.
Since it is necessary to receive a reply in this case, the quiet mode cannot be used. In our particular case,
the process of connecting is even more complicated, because the line leads through a gateway that must
also be requested to grant a link. A mail exchange therefore requires three levels of “opening’”:

- T-Box: connect to gateway via Kometh,
- Gateway: connect through to mail server via Ethernet,
- Server: open link to mail service.

In order to keep the number of such connection processes within reasonable bounds — the Ceres server is
blocked during this time - a clock (mailtime) records the time of the last exchange. The next connection
is initiated after a message has been stored in the export queue and 5 minutes have elapsed since the last
exchange.

If a user is already connected to the server via a (Kometh) line, the initiation of a mail exchange must be
delayed. Otherwise the various opening commands would be transmitted as data to that user, disturbing
communication. Therefore, a state must be associated with the line server (Lstat). The state indicates
whether the line is active (in use) or not. The active state is assumed as soon as a request is received or
initiated (open packet), the inactive state is assumed after receipt or dispatch of a close packet.
Furthermore, a global variable Lmode records whether the line server is acting as a genuine server for the
line, ready to accept requests - this is the normal mode — or whether it acts as the master, having
initiated a mail exchange. This information determines the lead character of packets which serves to let
the receiver determine whether a received packet came from the (correctly functioning) partner, or was a
reflection (by an incorrectly operating T-Box or gateway) of its own last sent packet.

5. In Retrospect

This paper describes a project which is a good example of a modular design, progressing through a
sequence of steps of successive extensions. The result is a system of surprisingly high funtionality in
respect to its small size (see Appendix). Its efficiency and robustness is a direct benefit of its smallness,
and the latter is the result of restriction to essential functions. During its development, the primary
importance of the choice of the right basis for every successful modularization and extensibility became
abundantly clear. It was also recognized that there is a significant difference between a system that is
merely efficiently functional, and one that is usable. The latter must in addition be reliable and robust.
This requirement is particularly essential for a server system, because it does not operate under constant

21

human control. The most remarkable activity in this respect is the establishment of a link between two
servers. If it fails, attempts must be automatically repeated, and failure must certainly not infringe upon
other activities.

A third fact also became evident: Only proper integration with existing facilities can lead to a maximal
ratio between added functionality and added complexity. With regard to the described system, this
implies for example that no mail service should have to cater for editing facilities (such as e.g. exchanging
originator's and recipient's addresses). This is clearly an operation to be performed through existing
editing facilities which, therefore, must be general and flexible.

And last but not least: a structured language is the best tool to enforce proper structure to the last detail.
The entire server system described here is formulated in the language Oberon, including driver modules
for the network and the line interfaces. Without the use of a strongly typed language and the aid of a
watertight checker in the form of a compiler, the development of this system would have taken a
multiple of the time and effort spent.

The use of a high-level language was in no way a hinderance to master certain real-time constraints
inherent in every server system. On the one hand, there exist a few real-time constraints in the micro-
and millisecond range. They are well isolated in the driver module SCC [1]. On the other hand, some
real-time requirements in the range of seconds (timeouts) and even minutes are handled easily due to
the availability of a system-wide timer that is permanently operating (resolution: 3ms), and whose value
can be examined with a simple procedure call.

The entire file transfer, printer, and local mail server complex was completed by the author and
programmer in a surprisingly short time. In contrast, the length of time taken for the implementation of
the external mail service was rather disturbing. Development was fast for all those parts which were
under complete control of the designer, and which therefore displayed appropriate structure and were
fine-tuned to their purpose. In contrast, development was tedious — even extremely tedious - for those
parts that had to be twisted to comply with existing components and imposed Standards. In many cases
such development could not proceed according to widely heralded principles of orderly program design,
but only by searching through "distributed documentation” and subsequent trial and error. One is
tempted to conclude that existing, over—generalized standards and universally configurable software are
the principal ferments of unprofessional work. It appears that the computer communications world is
particularly plagued by its own artefacts and idiosyncrasies.

References

1. N. Wirth. Ceres-Net: A low—cost Local Area Computer Network. Companion Report.
(to appear in Software, Practice and Experience, 20)

2. N.Wirth and J. Gutknecht. The Oberon System. Software, Practice and Experience, 19, 9 (Sept. 1989).

22

Appendix

1. Net Commands
The following commands are contained in module Netwhich is available on every workstation:

Net.SendFile partner fileO file1 ... ~
The first parameter identifies the partner to which the files are sent. The partner must have
removed its write protection.

Net.ReceiveFilepartner fileO file1 ... ~

Net.SendMail
The text contained in the marked viewer is dispatched to the mail server. In order to be acceptable
as a message, the text must start with at least one address line of the form

To: name address

The name consists of letters, digits, and periods (no blanks). The address is optional. If omitted, the
message is local. An address starts with the character @ (or %, or !). Each recipient is listed on a
separate line starting with "To:". A subject may be indicated, headed by "Re:", also on one line.
Net.Mailbox
A viewer is opened displaying the mailbox directory fetched from the mail server. Each line
contains a message number, the sender's name, and date, time, and length of the message.
Net ReceiveMail
This command is taken from the mailbox viewer's menu after selecting a message in the same
viewer (in order 1o select the line: double click). The message indicated in the selected line is
fetched and displayed in a new viewer.
Net.DeleteMail

This command is taken from the mailbox viewer's menu after selecting a message in the same
viewer. The selected message is then removed from the mailbox.

Net.GetTime name

The time and date is fetched from the specified server, and the workstation's time and date are set
to the fetched values.

Net.SetPassword name password
The new password (specified as a string within quotes) is registered in the specified server.

Net.SendMsg name message

The message is sent to the named partner and displayed in the recipients log text. The short
message consists of any characters on one line.

Net.StartServer
This command enables the workstation to act as a server,

Net.Protect
The workstation is protected from receiving files by request from other stations (default mode).

Net.Unprotect
Net.StopServer

23

2. Line Commands
The following commands are contained in module Line which communicates over an RS-232 (V24) line:

Line.SendFile fileO file1 ... ~
The partner must have removed its write protection.

Line.ReceiveFilefileO file1 ... ~

Line.SendMail
The text contained in the marked viewer is dispatched to the mail server. (see Net.SendMail)

Line.Mailbox
A viewer is opened displaying the mailbox directory fetched from the mail server. Each line
contains a message number, the sender's name, and date, time, and length of the message.

Line.ReceiveMail
This command is taken from the mailbox viewer's menu after selecting a message in the same
viewer (in order to select the line: double click). The message indicated in the selected line is
fetched and displayed in a new viewer.

Line.DeleteMail

This command is taken from the mailbox viewer's menu after selecting a message in the same
viewer. The selected message is then remaved from the mailbox.

Line.Start

Line.SendMsg
Sends the text specified on the same line. (Used to issue Kometh commands).

Line.Close

3. Server Commands

The following commands are contained in various server modules installed in a server station:

NetServer.Start LineServer.Start PrintServer.Start MailServer.Start
NetServer.State LineServer.State PrintServer.State MailServer State
NetServer.Reset LineServer.Reset PrintServer.Reset MailServer.Reset
NetServer.Stop LineServer.Stop PrintServer.Stop MailServer.Stop
NetServer.SendFile LineServer.StartTBox

NetServer.ReceiveFile LineServer.SendMsg

The Start commands install the named server in the Oberon command interpretation loop, the Stop
commands remove it. State indicates the state of the respective server and the number of tasks in its input
queue. Reset clears the server's input queue.

4. Module Sizes
Module lines of source code Size of code (bytes)
Net 460 4600
Line 450 4700
NetServer 380 4800
LineServer 520 5900
PrintServer 150 1600
MailServer 300 4300
Core 100 1000
scc 150 1100 + input buffer
V24 60 350 + input buffer

Printmaps 290 (assembler code)

24

5.The Server's Module Structure

NetServer LineServer MailServer PrintServer

Oberon ﬁ‘ 1 fT‘ 11 TT ?T‘ i

Texts I
Files

SCC V24 Core Printmaps

Fig. 6. Module Configuration

6. Interfaces of Modules SCCand V24,

The modules SCC and V24 are used in workstations and server stations. They are the drivers of the
respective net and line communication interfaces.

DEFINITION SCC;

TYPE Header =
RECORD valid: BOOLEAN; dadr, sadr, typ: SHORTINT;
len: INTEGER; (xof data following headerx)
destlink, srcLink: INTEGER (xlink numbersx)
END ;

PROCEDURE Start(filter: BOOLEAN);
PROCEDURE Send(VAR head, buf: ARRAY OF BYTE);
PROCEDURE Available(): INTEGER;
PROCEDURE ReceiveHead(VAR head: ARRAY OF BYTE);
PROCEDURE Receive(VAR x: BYTE);
PROCEDURE Skip(m: INTEGER);
PROCEDURE Stop;
END sCC.

DEFINITION V24;
(xinterrupt-driven UART channel B, Signetics 2681%)

PROCEDURE Start(CSR, MR2: CHAR);
(% Clock Select Register: 66X: 1200 bps, 88X: 2400 bps, 0BBX: 9600 bps
Mode Register 2: 7X: 1 stop bit, OFX: 2 stop bits %)

(*Output Port: 0 = DTR, 1 = RTS %)
PROCEDURE SetOP(s: SET);
PROCEDURE ClearOP(s: SET);

(#Input Port: 0 = DCD, 1 = CTS, 2 = DSR¥)
PROCEDURE IP(n: INTEGER): BOOLEAN;

(#Status Register. 0: Rx rdy, 2: Tx rdy, 4: overrunx)
PROCEDURE SR(n: INTEGER): BOOLEAN;

PROCEDURE Available(): INTEGER;
PROCEDURE Receive(VAR x: BYTE);
PROCEDURE Send(x: BYTE);

PROCEDURE Break;
PROCEDURE Stop;

END V24,

25

7.The Net and Line Protocol

In the following syntax, the initiator's packets are denoted in italics, those of the target in normal font.
Codes written in capital letters represent a packet, words in lower case are parameters (data part).

Transaction = SendFile | ReceiveFile | SendMail | Mailbox | ReceiveMail | DeleteMail |
SendMsg | GetTime | SetPassword | NameRequest | PrintRequest.

SendFile = REC username password filename OutTransaction.

ReceiveFile = SND username password filename InTransaction.

SendMalil = RML username password OutTransaction.

Mailbox = DIR username password InTransaction.

ReceiveMail = SML username password msgno InTransaction.

DeleteMail = DML username password msgno (ACK | NAK | NPR).

GetTime = TRQ (TIM time date).

SendMsg = MSG string.

SetPassword = SPW username password newpassword (ACK | NAK | NPR).

PrintReq = PRT username password OutTransaction,

MailTransfer = (X name {Data {Data} ACK} Term {Data {Data} ACK} Term.

NameRequest= NRQ servername [NRS].

InTransaction = DAT, data ACK; {DAT; data ACKj,q} | NAK | NPR.

OutTransaction = ACKy DAT data ACK, {DAT, data ACK;q} | NAK | NPR.

in the Net protocol, the command is encoded as the packet's type. In the line protocol, all items shown
appear as the data part of packets. The first packet, identifying the command (service request), is an
open—packet (see Line Packet Format). All others are data-packets. Each transaction is terminated by an
additional close-packet. The MailTransfer command is available on the line server only, and it serves to
exchange mail with an external server.

SND 41H
REC 42H
PRT 43H
MSG 44H
TRQ 45H
TIM 47H
SPW 48H
DIR 4AH
SML 4BH
RML 4CH
DML 4DH
ACK 10H -17H
NAK 25H
NPR 26H

username, filename, and servername, are strings of characters terminated by a OX. Password, time and
date are encoded into 4 bytes, and msgno is encoded in 2 bytes.

26

8. The Net Packet Encoding
Each packet consists of a header followed by a data part. The header contains the following fields:

dadr 1 byte destination address (-1 = broadcast)

sadr 1 byte source address
typ 1 byte command code or sequence number (see App. 7)
len 2bytes length in bytes of data part

destlink 2 bytes destination link number (unused)
srclink 2 bytes source link number (unused)

9. The Line Packet Encoding

Each packet consists of a header byte followed by a data part. The header byte contains the following
fields:

type bits 4-7 type at transport level

end bit 2 unused

rsno bit1 receiver's sequence number (modulo 2)

ssno bit 0 sender's sequence number (modulo 2)
Type values:

1 Data 2 DataAck

3 Open 4 OpenAck

5 Close 6 CloseAck

7 Abort

Each packet is encoded for transmission in the following way:

1. A2-byte checksum is computed and appended.
2. Byte triplets abc are formed and partitioned into 6-bit byte quadruples xyzw:

ag .. a7 bg..byCo .. C7 = Xg . X5 Y - Y5 Zg oo Z5 Wp - W

3. 33 is added to each 6-bit byte, which is extended to 8 bits.

4. Alead byte precedes the sequence obtained in steps 1-3. Its value is "{" for the
partner which opened the connection (master), and "}" for the server.

5. A CR-byte (ODX) is appended.

10. The CX-400 Message Format

Message = MSG length envelope {body}.
envelope = ENV length {field}.

field = MSGID len string | message identification
ORIG len ORname | originator
PRREC len ORname | primary recipient
[COREC len ORname] | copy recipient
[SUBJ) len string] | subject
[TITLE len string] | title
SUBMI len DateTime. submission date and time
body = ASCHl length {byte}.

ORname = list req conv show ntyp len string.
DateTime = year month day hour min sec.

length: 4 bytes Eidﬁ TOCTIL PG
' Informatikbitliothek
ETH-Zentrum
{H-8082 Zirich

len:

string:

list:

req:

conv:

show:

ntyp:

year:
month, day,

MSG =
ENV =
MSGID =
ORIG =
PRREC =
COREC =
SUBJ =
TITLE =
SUBMI =
ASCIl =

27

2 bytes

sequence of bytes terminated by 0X
2 bytes (2010H or 2011H)

2 bytes (2020H or 2021H)

2 bytes (2030H or 2031H)

2 bytes (2040H or 2041H)

2 bytes (3010H, ETH name)

1 byte, year — 1900

hour, min, sec: 1 byte each

4000H
5000H
1010H
1020H
1031H
1032H
1050H
1060H
1090H
6020H

